Cho đường thẳng y= \(-\sqrt{3}\)X - 2 TẠO VỚI TRỤC HOÀNH 1 GÓC BAO NHIÊU ĐỘ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}2-2m>0\\2-2m=m^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m^2+2m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=-3\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-3+n=-3\\-2m+n+6=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=0\\-2m+n=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\m+n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\)
a: a=3 nên y=3x+b
Thay x=2 và y=0 vào y=3x+b, ta được:
\(3\cdot2+b=0\)
=>b+6=0
=>b=-6
vậy: y=3x-6
b: Vì (d): y=ax+b//y=-x+6 nên \(\left\{{}\begin{matrix}a=-1\\b\ne6\end{matrix}\right.\)
vậy: (d): y=-x+b
Thay x=-1 và y=-9 vào (d), ta được:
\(b-\left(-1\right)=-9\)
=>b+1=-9
=>b=-10
Vậy: (d): y=-x-10
c: (d1): y=3x-6 có a=3>0
nên góc tạo bởi đường thẳng này với trục Ox là góc nhọn
Vì (d2): y=-x-10 có a=-1<0
nên góc tạo bởi đường thẳng này với trục Ox là góc tù
=))tuy có hơi trễ nhưng là 120 độ nha=)