Bài 1: Cho hình chữ nhật ABCD. E đối xứng với A qua D. F đối xứng với C qua D. Kẻ EH vuông góc với AC. EH cắt CD tại K, AK cắt CE tại I, AI giao BD tại M.
a) Tứ giác DBCE là hình bình hành
b) Tứ giác ACEF là hình thoi
c) CM IM.BD=DI.BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này hơi dài, c tham khảo ở đây nè https://cunghocvui.com/danh-muc/toan-lop-8
Điểm F có lẽ hơi thừa đấy.
Bạn c/m K là trực tâm của tam giác AEC \(\Rightarrow AK\perp EC\Rightarrow AI\perp EC\Rightarrow\widehat{AIC}=90^0\)
Gọi O là giao điểm của AC và BD thì O là trung điểm của AC và BD và AC = BD
Tam giác AIC vuông tại I có IO là trung tuyến ứng với cạnh huyền AC
\(\Rightarrow IO=\frac{1}{2}AC\Rightarrow IO=\frac{1}{2}BD\)
Tam giác BID có IO là trung tuyến và \(IO=\frac{1}{2}BD\Rightarrow\Delta BID\)vuông tại I
\(\Rightarrow S_{BID}=\frac{1}{2}.BI.ID\)(1)
Chứng minh được BDEC là hình bình hành nên \(BD//CE\)
Mà \(AI\perp CE\left(cmt\right)\Rightarrow IM\perp BD\)
Tam giác BID có đường cao IM \(\Rightarrow S_{BID}=\frac{1}{2}IM.BD\) (2)
Từ (1) và (2) có: \(IM.BD=DI.BI\)
a: Xét tứ giác DBCE có
DE//CB
DE=CB
Do đó: DBCE là hình bình hành
b: Xét tứ giacs ACEF có
D là trug điểm chung của AE và CF
AE vuông góc với CF
Do đó: ACEF là hình thoi
a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày