Cho hình thang cân ABCD có CD=2AB=2a (a>0), \(\widehat{DAB}\)=1200. AH vuông góc CD tại H. Tính \(\overline{AH}.\left(\overline{CD}-4\overline{AD}\right)\) và \(\overline{AC}.\overline{BH}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}=120^0\Rightarrow\widehat{D}=60^0\Rightarrow\left|AH\right|=\left|DH\right|.tan60^0=\frac{a\sqrt{3}}{2}\)
\(\Rightarrow\left|AD\right|=\frac{AH}{sin60^0}=a\)
\(AH.\left(CD-4AD\right)=AH.CD-4AH.AD=-4AH.AD\) (do \(AH\perp CD\))
\(=-4\left|AH\right|.\left|AD\right|.cos30^0=-4.\frac{a\sqrt{3}}{2}.a.\frac{\sqrt{3}}{2}=-3a^2\)
\(AC.BH=\left(AH+HC\right).BH=AH.BH+HC.BH\)
\(=HA.HB-HC.HB=\left|AH\right|.\left|BH\right|.cos45^0-\left|HC\right|.\left|BH\right|.cos45^0\)
Với lưu ý \(\left|HC\right|=\left|CD\right|-\left|DH\right|=\frac{3a}{2}\)
Bạn tự thay số vào tính nốt
Đáp án:
AD+BC
=ED-EA+EC-EB
=(ED+EC)-(EA+EB) (1)
Mà E là trung điểm của AB=> EA+EB=0
(1)=2EF (F là trung điểm DC)
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
\(abcd=101.ab=101.cd=abab=cdcd\)
Trong toán học, không thể xảy ra trường hợp
\(abcd⋮101\) mà \(ab\ne cd\) vì một số có 2 chữ số nhân với 101 thì kết quả sẽ là số đó viết 2 lần liền nhau
\(\Rightarrow ab-cd=cd-ab=0\left(đpcm\right)\)