K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 12 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{4}{a}+\frac{1}{4b}\right)(a+b)\geq (2+\frac{1}{2})^2\)

\(\Leftrightarrow \left(\frac{4}{a}+\frac{1}{4b}\right).\frac{5}{4}\geq \frac{25}{4}\)

\(\Leftrightarrow \frac{4}{a}+\frac{1}{4b}\geq 5\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{2}{a}=\frac{1}{2b}\\ a+b=\frac{5}{4}\end{matrix}\right.\) hay $a=1; b=\frac{1}{4}$

21 tháng 9 2019

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

Áp dụng BĐT Cauchy - Schwar:

\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)(1)

Áp dụng BĐT Nesbit:

\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\ge3\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\ge5\)

hay \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\ge\left(đpcm\right)\)

24 tháng 6 2018

Ta có: \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}-5\ge0\)

\(\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

Giải bất phương trình

Cuối cùng ta được: \(\left(c-a\right)^2\left(\frac{1}{\left(a+b\right)\left(b+c\right)}\right)+2\left(b-c\right)^2\left(\frac{1}{\left(a+c\right)\left(a+b\right)}\right)+\left(a-b\right)^2\) \(\left(\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\ge0\)

BĐT đúng <=> a = b = c

30 tháng 12 2017

\(BDT\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

\(\Leftrightarrow\frac{c-a}{a+b}+\frac{2\left(c-b\right)}{a+b}+\frac{b-a}{a+c}+\frac{2\left(b-c\right)}{a+c}+\frac{a-b}{b+c}+\frac{a-c}{b+c}\ge0\)

\(\Leftrightarrow\left(c-a\right)^2\frac{1}{\left(a+b\right)\left(b+c\right)}+2\left(b-c\right)^2\frac{1}{\left(a+c\right)\left(a+b\right)}+\left(a-b\right)^2\frac{1}{\left(a+c\right)\left(b+c\right)}\ge0\)

BĐT cuối đúng nên ta có ĐPCM

Xảy ra khi \(a=b=c\)

31 tháng 12 2017

Tại t nháp luôn vào chỗ để gửi trả lời nên khi gửi ko nhìn lại nó hơi tắt. Hết dòng thứ 2, bắt đầu dòng thứ 3:

\(\Leftrightarrow\left(\frac{c-a}{a+b}+\frac{a-c}{b+c}\right)+\left(\frac{2\left(b-c\right)}{a+c}+\frac{2\left(c-b\right)}{a+b}\right)+\left(\frac{a-b}{b+c}+\frac{b-a}{a+c}\right)\ge0\)

\(\Leftrightarrow\left(c-a\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+2\left(b-c\right)\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{a+c}\right)\ge0\)

\(\Leftrightarrow....\)  the last ineq in here ! 

18 tháng 2 2019

Mk nghĩ chỗ kia là cộng :3

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c+2c}{a+b}+\frac{a+b+2b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

Áp dụng bđt Cauchy: \(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)

Áp dụng bđt Nesbit: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\Leftrightarrow2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge3\)

Cộng theo vế suy ra đpcm. "=" khi a=b=c

12 tháng 6 2020

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1

23 tháng 5 2017

\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

23 tháng 5 2017

cauchy - schwarz là bđt Cauchy à bạn

9 tháng 9 2018

TA CÓ:

\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)

\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)

ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)

\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)

TA CẦN C/M:

\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)        \(\left(=2abc\left(a+b+c\right)\right)\)

ÁP DỤNG BĐT BUNHIA TA CÓ:

\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)

VẬY CẦN C/M:

\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)

XÉT HIỆU:

\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)

\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)

VÌ:

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)

\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)

\(\Rightarrow DPCM\)

Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b

26 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)

Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

25 tháng 3 2018

Đề bài  bị cắt rồi kìa bạn...viết đủ rồi mik giải cho

25 tháng 3 2018

viết lại nha

25 tháng 3 2018

Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)

25 tháng 3 2018

mình chưa hiểu câu đầu lắm