1.So sánh hợp lí:
a, \(\frac{13}{19}và\frac{47}{53}\)b, \(\frac{33}{131}và\frac{53}{217}\)
c, \(\frac{31}{40}và\frac{186}{241}\)
2. Chứng minh rằng: 7n-1/4 và 5n+3/12 với mọi n thuộc N* không thể đồng thời là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{-8}{15}=\frac{-8.12}{15.12}=\frac{-96}{180}\left(1\right)\)
\(\frac{7}{12}=\frac{7.15}{12.15}=\frac{105}{180}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow\frac{-8}{15}< \frac{7}{12}\)
\(b,\frac{13}{19}=\frac{13.53}{19.53}=\frac{689}{1007}\left(1\right)\)
\(\frac{47}{53}=\frac{47.19}{53.19}=\frac{893}{1007}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow\frac{13}{19}< \frac{47}{53}\)
c. TA CÓ:
\(\frac{33}{132}=\frac{1}{4}\) mà \(\frac{33}{131}>\frac{33}{132}\) suy ra \(\frac{33}{131}>\frac{1}{4}\) (1)
\(\frac{53}{212}=\frac{1}{4}\) mà \(\frac{53}{217}
d. TA CÓ:
\(\frac{41}{91}=\frac{410}{910}=1-\frac{500}{910}\); \(\frac{411}{911}=1-\frac{500}{911}\)
TA THẤY VÌ \(\frac{500}{910}>\frac{500}{911}\) NÊN \(1-\frac{500}{910}
a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
Lời giải:
Giả sử 2 phân số trên có thể đồng thời là số tự nhiên.
Ta có:
$\frac{7n-1}{4}$ là số tự nhiên
$\Rightarrow 7n-1\vdots 4$
$\Rightarrow 7n-1-8n\vdots 4$
$\Rightarrow -n-1\vdots 4\Rightarrow n+1\vdots 4$
$\Rightarrow n=4t-1$ với $t$ tự nhiên.
Khi đó:
$\frac{5n+3}{12}=\frac{5(4t-1)+3}{12}=\frac{20t-2}{12}$
$=\frac{10t-1}{6}$
Vì $10t-1$ lẻ với mọi $t$ tự nhiên nên $10t-1\not\vdots 2$
$\Rightarrow 10t-1\not\vdots 6$
$\Rightarrow \frac{5n+3}{12}$ không là số tự nhiên (trái với giả sử)
Vậy không thể tồn tại stn $n$ để 2 phân số trên đều là số tự nhiên.
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)
mik chưa hok phân số bạn ak nếu mk hok rồi thì mik đã trả lời rôi
sorry nha