Cho tam giác ABC có góc A=90 độ và AB=AC,gọi H là trung điểm của BC
a) C/m Tam giác AHB=Tam giác AHC và AH vuông góc BC
B) Từ C kẻ đường thẳng vuông góc với BC cắt đường thẳng AB tại K .C/m KC//AH
C) Tam giác BCK là tam giác gì .Tính góc BKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+Vì ΔABC có AB=AC(gt)⇒ΔABC là tam giác cân tại A
⇒∠ABC=∠ACB(t/c)
+H là trung điểm BC(gt)⇒HB=HC
+Xét ΔAHB vàΔAHC có:
AB=AC(gt)
∠ABC=∠ACB(cmt)
HB=HC(cmt)
⇒ΔAHB=ΔAHC(c.g.c)⇒đpcm.
b)+Theo a) có: ΔAHB=ΔAHC
⇒∠AHB=∠AHC(2 góc tương ứng)
+Mà ∠AHB+∠AHC=180°(kề bù)
⇒∠AHB=∠AHC=90°⇒AH⊥BC(đpcm).
c)+Vì M ∈ [AB](gt)
AB∥k(gt)
⇒MA∥k
+ Mà C,N∈ k ⇒CN∥MA ⇒đpcm.
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt)
BH=HC ( H là trung điểm của BC)
Cạnh AH chung
=> tam giác AHB= tam giác AHC( c.c.c)
b) Vì tam giác AHB = tam giác AHC ( cm trên)
=> góc AHB = góc AHC ( 2 góc tương ứng )
Mà góc AHB + góc AHC = 180o( 2 góc kề bù)
=> góc AHB = góc AHC = 180o : 2= 90o
=> AH \(\perp\) BC ( câu c) mik đnag nghĩ)
a)Xét tam giác AHB và tam giác AHC,có
AB=AC (gt)
Góc B=Góc C(hai góc ở đáy của tam giác ABC)
AH là cạnh chung
Do đó tam giác AHB= tam giác AHC(c.g.c)
b)Vì tam giác AHB=tam giác AHC(câu a)
suy ra góc AHB=góc AHC (hai góc tương ứng)
lại có Góc AHB+AHC=1800(hai góc kề bù)mà Góc AHB=AHC (cmt)
suy ra Góc AHB=900
suy ra AH vuông góc BC
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH