\(\frac{a}{e}+\frac{b}{g}+\frac{c}{h}+\frac{d}{i}=\frac{5}{13}\)
Tìm a, b, c, d, e, g, h, i?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{654}{12254}=\frac{12254-11600}{12254}=1+\frac{-11600}{12254}=1+\frac{1}{\frac{12254}{-11600}}=1+\frac{1}{1+\frac{23854}{-11600}}=1+\frac{1}{1+\frac{1}{-\frac{11600}{23854}}}=\)sức gõ công thức có hạn, cứ theo đó mà làm tiếp, đảm bảo sẽ ra ngay kết quả
đúng nha bạn
Ta có : \(\frac{a}{b}=\frac{35}{49}=\frac{5}{7}\)\(\Rightarrow a=5k;b=7k\Rightarrow a+b=12k\)
\(\frac{c}{d}=\frac{130}{143}=\frac{10}{11}\Rightarrow c=10f;d=11f\)\(\Rightarrow c+d=21f\)
\(\frac{e}{g}=\frac{7}{13}\)\(\Rightarrow e=7n;g=13n\Rightarrow e+g=20n\)
gọi số tự nhiên lớn nhất đó là x
\(\Rightarrow x=12k=21f=20n\)
\(\Rightarrow x\in BCNN\left(12,21,20\right)=420\)
\(\Rightarrow x=420t\left(t\in N\right)\)
vì x là số có 3 chữ số lớn nhất nên với t = 2 ,ta được x = 840
vậy ...
Đặt \(\frac{a}{2}=\frac{c}{4}=\frac{e}{5}\) = k => a = 2k; c = 4k ; e = 5k
\(\frac{b}{3}=\frac{d}{5}=\frac{g}{6}\)= h => b = 3h; d = 5h; g = 6h
Khi đó: \(\frac{a}{b}+\frac{c}{d}+\frac{e}{g}=\frac{2k}{3h}+\frac{4k}{5h}+\frac{5k}{6h}=\left(\frac{2}{3}+\frac{4}{5}+\frac{5}{6}\right).\frac{k}{h}=2\frac{3}{10}\)
=> \(\frac{23}{10}.\frac{k}{h}=\frac{23}{10}\)=> \(\frac{k}{h}=1\)=> k = h
Vậy \(\frac{a}{b}=\frac{2k}{3h}=\frac{2}{3};\frac{c}{d}=\frac{4}{5};\frac{e}{g}=\frac{5}{6}\)
\(\Rightarrow x\in BCNN\left(18;24;30\right).\)
\(\Rightarrow x\in\left\{0;360;720;1080;...\right\}\)
Mà \(x\) là số tự nhiên nhỏ nhất có 4 chữ số.
\(\Rightarrow x=1080\)
Vậy \(x=1080.\)
Chúc bạn học tốt!