Cho lục giác đều ABCDEF.Tìm tập hợp các điểm M sao cho
| vtMA+vtMD+vtME | +| vtMB+vtMC+vtMF| nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho lục giác đều ABCDEF.Tìm tập hợp các điểm M sao cho
| vtMA+vtMD+vtME | +| vtMB+vtMC+vtMF| nhỏ nhất
1) Có \(2\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{EC}\)
Lại có : \(\left\{{}\begin{matrix}\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\\\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{EC}\end{matrix}\right.\rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\left(\overrightarrow{AE}+\overrightarrow{BE}\right)+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{0}+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{ED}+\overrightarrow{EC}\) Do đó : \(2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}\left(=\overrightarrow{ED}+\overrightarrow{EC}\right)\)
2) Có : \(\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OE}\left(1\right)\\\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OF}=-2\overrightarrow{OE}\left(2\right)\end{matrix}\right.\)
(1) + (2) => \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OE}+2\overrightarrow{OF}=2\overrightarrow{OE}-2\overrightarrow{OE}=\overrightarrow{0}\)
3) \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{AC}=2\overrightarrow{AC}=4\overrightarrow{AO}\)
4) Ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\overrightarrow{0}=4\overrightarrow{MO}\)
Gọi E và F lần lượt là điểm nằm trên đoạn AB sao cho \(AE=\frac{1}{3}AB\) và \(AF=\frac{2}{3}AB\)
\(\Rightarrow\) I là trung điểm EF và \(\left\{{}\begin{matrix}\overrightarrow{EB}=-2\overrightarrow{EA}\\\overrightarrow{FA}=-2\overrightarrow{FB}\end{matrix}\right.\)
\(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(\Leftrightarrow\left|2\overrightarrow{ME}+2\overrightarrow{EA}+\overrightarrow{ME}+\overrightarrow{EB}\right|=\left|\overrightarrow{MF}+\overrightarrow{FA}+2\overrightarrow{MF}+2\overrightarrow{FB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{ME}\right|=\left|3\overrightarrow{MF}\right|\)
\(\Leftrightarrow ME=MF\Leftrightarrow M\) nằm trên trung trực của EF
Hay tập hợp M là đường trung trực của AB
gọi M có tọa độ là (x;y) do M thuộc Ox=> tọa ddoooj M là (x;0)
ta có : \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\left(-2-X;5\right)+\left(3-X;-1\right)+\left(7-X;1\right)\right|\)
=\(\left|\sqrt{\left(-2-X\right)^2+5^2}+\sqrt{\left(3-X\right)^2+1}+\sqrt{\left(7-X\right)^2+1}\right|\)
=> BẠN TÌ gtnn CÁI TRONG LÀ ĐC
MA+ MB+ 2MC+ 2MD=0
MA+ MA+ AB+ 2MA+ 2AC+ 2MA+ 2AD=0
6MA+ AB+ 2AC+ 2AD=0
6MA+ 2AI+ 4AJ=0
6MA= 2IA+ 4JA
MA= 1/3 IA+ 2/3 JA
Thế cũng ko tra lời được toàm mấy đứa cù lần