tìm ƯCLN của a và b=1+2+3+...+n= 2n+1 (n thuộc N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
=> \(n^2+1⋮d\)
=> \(n\left(n^2+1\right)⋮d\)
=> \(n^3+n⋮d\)
=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)
=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)
=> \(1⋮d\)
=> d = 1
=> \(\left(a;b\right)=1\)
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Ta có: \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
Gọi ƯCLN(\(\dfrac{n\left(n+1\right)}{2}\),\(2n+1\))=d
Ta có: \(\dfrac{n\left(n+1\right)}{2}⋮d\)\(\Leftrightarrow\dfrac{4n\left(n+1\right)}{2}⋮d\Leftrightarrow2n\left(n+1\right)⋮d\Leftrightarrow2n^2+2n⋮d\)
Lại có: \(\left(2n+1\right)⋮d\Leftrightarrow n\left(2n+1\right)⋮d\Leftrightarrow2n^2+n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)\(\Leftrightarrow n⋮d\)
\(\Leftrightarrow2n⋮d\)
Mà \(\left(2n+1\right)⋮d\)\(\Leftrightarrow1⋮d\)
=> Đpcm