CHO TAM GIÁC ABC.VẼ VỀ PHÍA NGOÀI CÁC TAM GIÁC VUÔNG CÂN ABD CÂN TẠI B,ACE CÂN TẠI C.GỌI M LÀ GIAO ĐIỂM CỦA BÉ VÀ CD
CMR:AM VUÔNG GÓC VỚI BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mp bờ BC chứa A, dựng tam giác BNC vuông tại C, gọi K là giao điểm EN và AB
\(\left\{{}\begin{matrix}AC=EC\left(\Delta ACE.vuông.cân\right)\\BC=NC\left(\Delta BNC.vuông.cân\right)\\\widehat{ACB}=\widehat{NCE}\left(cùng.phụ.\widehat{ANC}\right)\end{matrix}\right.\Rightarrow\Delta ABC=\Delta ENC\left(c.g.c\right)\\ \Rightarrow\widehat{BAC}=\widehat{NEC}\\ \Rightarrow\widehat{BAC}+\widehat{KAC}=\widehat{NEC}+\widehat{KAC}=180^0\\ \Rightarrow\widehat{AKE}=360^0-\widehat{ACE}-\widehat{NEC}-\widehat{KAC}=90^0\\ \Rightarrow NE\perp AB\\ \left\{{}\begin{matrix}BD=NE\left(=AB\right)\\BD//NE\left(\perp AB\right)\end{matrix}\right.\Rightarrow BDNE.là.hbh\\ \Rightarrow BM=MN\)
Mà \(\Delta BCN\) vuông cân tại C nên \(\Delta BMC\) vuông cân tại M
Sửa đề: vuông cân tại A
a: Xét ΔADC và ΔABE có
AD=AB
góc DAC=góc BAE
AC=AE
=>ΔADC=ΔABE
=>DC=EB
b: AD vuông góc AC
AE vuông góc AB
góc ADC=góc ABE
=>EB vuông góc CD