cho Δ abc va O là điểm bất kì trongΔ.các tia oa,ob,oc cắt bc,ca,ba lần lượt tại p,q,r
cmr
a)op/ap+oq/bq+or/cr=1
b)ap/op+bq/oq+cr/or≥9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC
Kẻ AH vuông góc BC< OK vuông góc BC
=>OK//AH
OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S
=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)
=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)
Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)
=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)