K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

\(A=x^2+10y^2+2xy-6y+5\)

\(A=x^2+2xy+y^2+9y^2-6y+1+4\)

\(A=\left(x+y\right)^2+\left(3y+1\right)^2+4\)

Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(3y+1\right)^2\ge0\\4>0\end{cases}}\)

=> A luôn dương với mọi x ; y

1 tháng 12 2019

\(B=x-x^2-1\)

\(B=-\left(x^2-x+1\right)\)

\(B=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Mà \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\frac{3}{4}< 0\end{cases}}\)

=> B luôn âm với mọi x

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

5 tháng 10 2021

\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

\(B=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

7 tháng 10 2021

Cảm ơn ạyeu

 

NV
1 tháng 11 2021

\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)

21 tháng 9 2022

Không biê

9 tháng 4 2020

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

9 tháng 4 2020

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)