Tam giác AbC vuông tại A , AB=2cm , AC=4cm . Khi đó độ dài cạnh AH bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:
\(AC^2=AH^2+HC^2\) (định lí pitago)
\(\Rightarrow AH^2=AC^2-HC^2\)
\(\Rightarrow AH=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AH^2}-\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}\)
\(\Rightarrow AB=3,75\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC=\sqrt{3,75^2+5^2}=6,25\left(cm\right)\)
\(AH=\sqrt{AC^2-HC^2}=3\left(cm\right)\)
\(HB=\dfrac{AH^2}{HC}=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=4+2,25=6,25(cm)
\(AB=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+) Ta có: AB vừa là đường cao vừa là đường trung tuyến
=> tam giác ADH cân tại A
=> AH = AD (1)
AC vừa là đường cao vừa là đường trung tuyến
=> tam giác AEH cân tại A
=> AH = AE (2)
Từ (1) và (2) => AH = AD = AE
+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
AH.BC = AB.AC
=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)
+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm
Vậy DE = 4,8cm
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
a, Xét tam giác HAB có: AB2 = AH2 + BH2 => AB2 = 42 + 22 => AB2 = 16 + 4 = 20 => AB = \(\sqrt{20}\)
Xét tam giác HAC có: AB2 = HA2 + HC2 => AC2 = 42 + 82 => AC2 = 16 + 64 = 80 => AC = \(\sqrt{80}\)
b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\)
=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)
Á mk nhầm nha \(\widehat{C}< \widehat{B}\)
#Hk_tốt
#Ngọc's_Ken'z
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
AB : |===|===|===|
AC: |===|===|===|===|
BC : |===|===|===|===|===| tổng 3 cạnh = chu vi = 2 cm
Cạnh AB có độ dài : 2 : 12 x 3 = 0,33 cm
Cạnh AC có độ dài : 2: 12 x 4 = 0,66 cm
Diện tích hình tam giác ABC là : 0,33 x 0, 66 : 2 = 0,1089 cm2
NẾU ĐỀ CHO CHU VI KHÁC THÌ LÀM TƯƠNG TỰ NHA. MÌNH THẤY CHU VI HÌNH NÀY NHỎ QUÁ !
Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{5}{16}\\ \Rightarrow AH^2=\dfrac{16}{5}\Rightarrow AH=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)