cho tam giác ABC cân tại A. Trên các canh AB, AC lần lượt lấy các điểm E và F sao cho AE = AF
a) CMR: EF // BC, BF = CE
b) Gọi M,N lần lượt là trung điểm của EF, BC. CMR: A, M, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AE=BE=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(AF=CF=\dfrac{AC}{2}\)(F là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AE=BE=AF=CF
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{BAF}\) chung
AF=AE(cmt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: BF=CE(Hai cạnh tương ứng)
a) Xét tam giác AME và tam giác BMC, có:
góc AME = góc BMC ( đối đỉnh)
EM = MC ( giải thiết )
AM= MB ( M là trung điểm của AB )
\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)
\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng)
\(\Rightarrow AE\)//\(BC\) ( đpcm)