K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019
https://i.imgur.com/wAev09Q.jpg
1 tháng 12 2021

a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2).
2= (3m – 2).1 + m – 2
2=3m -2 +m -2
2=4m -4
6=4m
m =3/2

b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng ½.
m <>2/3 ;2
A={(m-2)/(3m-2);0)
B={0;(m-2) )

diện tích ∆OAB =1/2 OA.OB
=> OA.OB=1
<=>(m-2)/(3m-2).(m-2) =±1
<=>(m-2)^2 =±(3m-2)
<=>(m^2-4m+4) =±(3m-2)
m^2 -7m +6 =0 => m={ 1; 6}
m^2 -m +2 =0 (vn)
m ={1;6 }

2 tháng 12 2021

Cho x = 0 => y = m - 2 

=> d cắt trục Oy tại B(0;m-2) => OB = | m - 2 | 

Cho y = 0 => x = \(\frac{2-m}{3m-2}\)

=> d cắt trục Ox tại A(\(\frac{2-m}{3m-2}\);0) => \(OA=\left|\frac{2-m}{3m-2}\right|\)

Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}\left|\frac{\left(m-2\right)\left(2-m\right)}{3m-2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{-m^2-4+4m}{3m-2}\right|=1\)ĐK : \(\frac{-m^2-4+4m}{3m-2}\ge0\Leftrightarrow\frac{-\left(m-2\right)^2}{3m-2}\ge0\Leftrightarrow\frac{\left(m-2\right)^2}{3m-2}\le0\)

\(\Rightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)

TH1 : \(\frac{-m^2-4+4m}{3m-2}=1\Leftrightarrow-m^2-4+4m=3m-2\)

\(\Leftrightarrow m^2-m+2=0\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\)vậy pt vô nghiệm 

TH2 : \(\frac{-m^2+4m-4}{3m-2}=-1\Leftrightarrow-m^2+4m-4=2-3m\)

\(\Leftrightarrow m^2-7m+6=0\Leftrightarrow m=1;m=6\)(ktmđk)

Vậy ko có giá trị m để SOAB = 1/2 

17 tháng 12 2020

Đề là \(m\ne-\dfrac{1}{2}\) chứ.

\(x=0\Rightarrow y=-2\Rightarrow OB=2\)

\(y=0\Rightarrow x=\dfrac{2}{2m+1}\Rightarrow OA=\left|\dfrac{2}{2m+1}\right|\)

\(S_{\Delta OAB}=\dfrac{1}{2}.2.\left|\dfrac{2}{2m+1}\right|=\left|\dfrac{2}{2m+1}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left|2m+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)

17 tháng 12 2020

Nếu đề đúng là \(m\ne\dfrac{1}{2}\) thì xét thêm trường hợp \(m=-\dfrac{1}{2}\)

23 tháng 9 2023

Theo đề bài: \(\left\{{}\begin{matrix}A\in Ox\\B\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\left(x_A;0\right)\\B\left(0;y_B\right)\end{matrix}\right.\).

Thay vào phương trình đường thẳng \(\left(d\right)\) ta được:

\(\left\{{}\begin{matrix}0=\left(2m+1\right)x_A-2\\y_B=\left(2m+1\right)\cdot0-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=\dfrac{2}{2m+1}\\y_B=-2\end{matrix}\right.\).

Do đó: \(\left\{{}\begin{matrix}OA=\left|x_A\right|=\dfrac{2}{\left|2m+1\right|}\\OB=\left|y_B\right|=\left|-2\right|=2\end{matrix}\right.\)

\(\Delta OAB\left(\hat{O}=90^o\right)\) có: \(S=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\)

\(\Leftrightarrow OA\cdot OB=1\)

\(\Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\)

\(\Rightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\left(TM\right)\\m=-\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\).

6 tháng 11 2019

d   ∩   O y   =   B x B   =   0 ⇒     y B   =   4   ⇔   B   0 ;   4     ⇒ O B   =   4   =   4 d   ∩   O x   =   A y A   =   0 ⇔     m 2   –   2 m   +   2 x A   +   4   =   0   x A   = x A = − 4 m 2 − 2 m + 2 ⇒ A − 4 m 2 − 2 m + 2 ; 0 ⇒ O A − 4 m 2 − 2 m + 2

\ S Δ A O B = 1 2 O A . O B = 1 2 .4. − 4 m 2 − 2 m + 2 = 8 m − 1 2 + 1

Ta có  m   –   1 2 +   1 ≥   1   ∀ m

Do đó    S Δ A O B = 8 m − 1 2 + 1 ≤ 8 1 = 8

Dấu “=” xảy ra khi  m   –   1   =   0   ⇔   m   =   1

Hay tam giác OAB có diện tích lớn nhất là 8 khi    m   =   1

Đáp án cần chọn là: A