Tìm nghiệm nguyên \(y^2-5y+62=\left(y-2\right)x^2+\left(y^2-6y+8\right)x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT \(\Leftrightarrow\left(y^2-5y+6\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left(x^2+yx-4x-y+3\right)=56\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)
Ta nhận thấy x+y-3 là tổng của y-2, x-1
Đến đây ta xét lần lượt các trường hợp là ra
Tách ra \(\left(x-1\right)\left(y-2\right)\left[\left(x-1\right)+\left(y-2\right)\right]=56\)
Xét các cặp \(\left(1;7\right);\left(-8;1\right);\left(7;-8\right)\)và hoán vị
\(\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(xy-4x\right)\)
\(\Leftrightarrow\left(y-2\right)\left(x^2+xy-4x-y+3\right)=56\)
\(\Leftrightarrow\left(y-2\right)\left[\left(x-1\right)\left(x-3\right)+y\left(x-1\right)\right]=56\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)
Tới đây bạn giải pt ước số bình thường (phân tích 56 thành tích 3 số là ok)
\(P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{7}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+xy+yz+zx+xy+yz+zx}+\frac{7}{\frac{\left(x+y+z\right)^2}{3}}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}=30\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Vì 105 là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|}+x^2+x+y\) phải là các số lẻ.
Từ \(2x+5y+1\) là số lẻ mà \(2x+1\) là số lẻ nên 5y là số chẵn suy ra y là số chẵn.
\(2^{\left|x\right|}+x^2+x+y\) là số lẻ mà \(x^2+x=x\left(x+1\right)\) là tích của hai số nguyên liên tiếp nên là số chẵn, y cũng là số chẵn nên \(2^{\left|x\right|}\) là số lẻ. Điều này chỉ xảy ra khi \(x=0\)
Thay x=0 vào phương trình đã cho, ta được:
\(\left(5y+1\right)\left(y+1\right)=105\)
\(\Leftrightarrow5y^2+6y-104=0\)
\(\Leftrightarrow5y^2-20y+26y-104=0\)
\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)
\(\Leftrightarrow\left(5y+26\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=-\frac{26}{5}\left(\text{loại}\right)\\y=4\left(TM\right)\end{cases}}\)
Vậy phương trình có nghiệm nguyên \(\left(x;y\right)=\left(0;4\right)\)
Chứng minh rằng không tồn tại số nguyên n thỏa mãn $2014^{2014}+1\vdots n^{3}+2012n$ - Số học - Diễn đàn Toán học
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
\(\Leftrightarrow y^2-5y+6+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)
\(\Leftrightarrow\left(y-2\right)\left[x^2+\left(y-4\right)x-y+3\right]=56\)
Đến đây là pt ước số cơ bản rồi, hơi nhiều cặp nên bạn tự giải nốt :(