K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

Ta có: |2x‐13|>=0﴾với mọi x﴿

=>|2x‐13|‐7/4>=‐7/4﴾với mọi x﴿ hay A>=‐7/4

Do đó, GTNN của A là ‐7/4 khi:

2x‐13=0 2x=0+13=13

x=13/2=6,5

Vậy GTNN của A là ‐7/4 khi x=6,5 

21 tháng 12 2015

|y-2015|=|y-1|

=>|y-2015|-|y-1|=0

Ta có: |y-2015|-|y-1|>=y-2015-(y-1)=y-2015-y+1=(y-y)-(2015+1)=0-2014=-2014

Do đó, GTNN của biểu thức trên là -2014

hình như cứ thấy thiếu thiếu cái j đấy

21 tháng 12 2015

ko phải, thấy kì là là dấu = mà là biểu thức

7 tháng 10 2018

\(A=|x-2006|+|2007-x|\ge|x-2006+2007-x|=1\)

Dấu "=" xảy ra khi: \(\left(x-2006\right)\left(2007-x\right)\ge0\Rightarrow\left(x-2006\right)\left(x-2007\right)\le0\)

Mà \(x-2006>x-2007\Rightarrow\hept{\begin{cases}x-2006\ge0\\x-2007\le0\end{cases}\Rightarrow2006\le x\le2007}\)

Vậy GTNN của A là 1 khi \(2006\le x\le2007\)

Chúc bạn học tốt.

27 tháng 10 2016

ta sử dung bất đẳng thức IaI+IbI lớn hơn hoặc bằng Ia+bI

dấu bằng xảy ra khi và chỉ khi tích ab lớn hơn hoặc bằng 0

áp dung vào ta có:   Ix-2015I+Ix-2016I=Ix-2015I+I2016-xI \(\ge\) Ix-2015+2016-xI=I1I=1

dấu bằng xảy ra khi và chỉ khi (x-2015)(2016-x) lờn hơn hoặc bằng 0

hay \(2015\le x\le2016\)

vậy giá trị nhỏ nhất của biểu thức là 1. dấu bằng xảy ra khi và chỉ khi \(2015\le x\le2016\)

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31