Cho tam giác ABC có AC > AB . Trên CA lấy E sao cho CE = AB . Các đường trung trực BE và AC cắt nhau O . CMR :
a) tam giác AOB = tam giác COE
b) OA là phân giác BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC, theo tính chất đường trung trực ta có:
OB = OE
OA = OC
Xét tam giác AOB và tam giác COE có:
AO = CO (cmt)
OB = OE (cmt)
AB = CE (gt)
=> tam giác AOB = Tam giác COA (c.c.c) (ĐPCM)
b)
Ta có: tam giác AOB = tam giác COE (ý a)
=> \(\widehat{ABO}=\widehat{CEO}\) (2 góc tương ứng)
Mà \(\widehat{CEO}=90^o\Rightarrow\widehat{ABO}=90^o\)
Lại có \(\widehat{AEO}=90^o\) (OC là đg trung trực)
Xét tam giác ABO và tam giác AEO có:
\(\widehat{ABO}=\widehat{AEO}=90^o\)
AO chung
BO = OE(cmt)
=> tam giác ABO = tam giác AEO (ch-cgv)
=> \(\widehat{BAO}=\widehat{EAO}\) (2 góc tương ứng)
hay \(\widehat{BAO}=\widehat{CAO}\)(do E \(\in\)AC)
Mà AO nằm giữa AB và AC
=> AO là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
a: Xét ΔAOB và ΔCOE có
OB=OE
OA=OC
AB=CE
=>ΔAOB=ΔCOE
b: góc OAB=góc OCE
=>góc OAB=góc OAC
=>AO là phân giác của góc BAC
xét tg aob và coe
ab = ce
oa = oc ( thuộc đg trung trực ac )
ob = oe ( ............................. be )
suy ra hai tg =
b, vì hai tg trên =
-> góc oab = oce 1
tg aoc cân tại o
-.> góc oac = oce 2
từ 1,2 -> góc oab = oac
-> đpcm