Cho x,y,z thỏa mãn \(\frac{1}{x+2y}+\frac{1}{y+2z}+\frac{1}{z+2x}=1\)
Tìm GTNN của biểu thức \(P=\frac{x}{x+2yz}+\frac{y}{y+2zx}+\frac{z}{z+2xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
ĐKXĐ : \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng ( a+b)2 \(\ge4ab\)ta có :
( x+ 2y)2 = \(\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\left(\frac{2x+y}{2}\right).\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\)
\(\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự : \(\frac{2y+z}{y\left(y+2\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{2z+x}{z.\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Ta có : \(\sqrt{\left(2x-1\right)1}\le\frac{2x-1+1}{2}\)
\(\Rightarrow\sqrt{2x-1}\le x\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
\(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\)
\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
Do đó
A \(\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\)
Vậy Max A = 3 khi x = y = z = 1
Theo Cô-si ta có:
\(3=\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)
Xét:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}=\frac{1}{3}\left[\frac{\left(x-y\right)^2}{xy\left(x+2y\right)}+\frac{\left(y-z\right)^2}{yz\left(y+2z\right)}+\frac{\left(z-x\right)^2}{zx\left(z+2x\right)}\right]\ge0\)
\(\Rightarrow\Sigma_{cyc}\frac{2x+y}{x\left(x+2y\right)}\le3\)
\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)
Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)
\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)
Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)
\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)
Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)
Đẳng thức xảy ra khi x = y = z = 1
Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)
Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)
=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)
Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)
Vậy MaxA=3 đạt được khi x=y=z=1
Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)
\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)
\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)
Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)
Nên thay vào ngược dấu
=> ch bt lm
Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.
\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)
Tương tự cộng lại. Xong.
Cách Cauchy-SChwarz:
Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)
HSG toán 9 Quảng Nam năm 2018-2019
Giải: Từ đẳng thức đã cho suy ra: \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\). Áp dụng (a+b)2 >= 4ab ta có:
\(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\left(\frac{2x+y}{2}\right)\cdot\frac{3y}{2}\)
\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\). Dấu "=" xảy ra <=> x=y
\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)
Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)
\(\Rightarrow A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\left("="\Leftrightarrow x=y=z\right)\)
Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le2\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)
Tương tự \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}},\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)Do đó:
\(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTLN của A=3 đạt được khi x=y=z=1
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)
=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\)
Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)
=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)
=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)
=> A = \(8+2020=2028\)
\(1=\frac{1}{x+y+y}+\frac{1}{y+z+z}+\frac{1}{z+x+x}\)
\(\Rightarrow1\le\frac{1}{9}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{y}+\frac{2}{z}+\frac{1}{z}+\frac{2}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\Rightarrow xy+yz+zx\ge3xyz\)
\(P=\frac{x^2}{x^2+2xyz}+\frac{y^2}{y^2+2xyz}+\frac{z^2}{z^2+2xyz}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+6xyz}=\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x^2+y^2+z^2+6xyz}\)
\(\Rightarrow P\ge\frac{x^2+y^2+z^2+6xyz}{x^2+y^2+z^2+6xyz}=1\)
\(P_{min}=1\) khi \(x=y=z=1\)
@Nguyễn Việt Lâm hôm nay làm gần trăm bài rồi mà vẫn chưa ngủ ak anh