Tìm số tự nhiên bé nhất, biết số đó chia 2005 dư 23, chia 2007 dư 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A chia cho 2007 dư 32 nên A có dạng A = 2007*k + 32 với k >=1.
Ta tìm k nhỏ nhất sao cho A chia cho 2005 dư 23. Ta có
A = 2007*k + 32 = 2005*k + (2*k + 9) + 23
=> 2*k + 9 chia hết (là bội) cho 2005.
=> k nhỏ nhất khi 2*k + 9 = 2005
=> k = 998
Gọ số cần tìm là a . Theo đề ra ta có :
\(\begin{cases}a=2005k+23\\a=200ll+32\end{cases}\)( \(k;l\in N;\left(k;l\right)=1\) ; k ; l bé nhất )
\(\Rightarrow2005k+23=2007l+32\)
\(\Rightarrow2005k-9=2007l\)
\(\Rightarrow\frac{2005k-9}{2007}=l\)
Vi l là số tự nhiên
\(\Rightarrow2005k-9⋮2007\)
\(\Rightarrow2005k-9\in B_{2007}\)
\(\Rightarrow2005k-9\in B_{2007}\)
Đến dây bạn tự giải tiếp nhé .
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số cần tìm là a
\(\hept{\begin{cases}a=2005k+23\\a=200ll+32\end{cases}}\)( k;l \(\in\)N ( k;l) =1 ;k;l bé nhất )
\(\Rightarrow\hept{\begin{cases}2005k+23=2007l+32\\2005k-9=2007l\end{cases}}\)
\(\Rightarrow\frac{2005k-9}{2007}=l\)
Vì l là số tự nhiên
\(\Rightarrow2005k-9⋮2007\)
\(\Rightarrow2005k-9\in B\left(2007\right)\)
\(\Rightarrow2005k-9=2007\)
\(\Rightarrow2005k=2016\)
\(\Rightarrow k=\frac{2016}{2005}=1,0....\)( chắc vại :3 )