K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

Theo bất đẳng thức Cauchy :

\(G=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x\left(2-x\right)}{\left(2-x\right)x}}+1=7\)

Đẳng thức xảy ra khi ...

tự tìm dấu = :))

22 tháng 7 2020

Trả lời:

\(G=\frac{9}{2-x}+\frac{2}{x}\)\(\left(ĐK:0< x< 2\right)\)

\(G=\frac{9}{2-x}+\frac{2-x+x}{x}\)

\(G=\frac{9}{2-x}+\frac{2-x}{x}+1\)

Áp dụng BĐT Cauchy ta có:

\(\frac{9x}{2-x}+\frac{2-x}{x}\ge2.\sqrt{\frac{9x}{2-x}\times\frac{2-x}{x}}=2.3=6\)

\(\Leftrightarrow\frac{9}{2-x}+\frac{2-x}{x}+1\ge6+1=7\)

Hay \(G\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{9x}{2-x}=\frac{2-x}{x}\)

\(\Leftrightarrow\left(2-x\right)^2=9x^2=\left(\pm3x\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=3x\\2-x=-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2=4x\\2=-2x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=-1\left(L\right)\end{cases}}\)

Vậy \(G_{min}=7\Leftrightarrow x=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2023

Lời giải:
1. Áp dụng BĐT Cô-si

$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$

$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$ 

Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$

$\Leftrightarrow x=0$ hoặc $x=2$

 

AH
Akai Haruma
Giáo viên
13 tháng 7 2023

2.

Áp dụng BĐT Cô-si:

$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$

$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)

Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
 

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)

15 tháng 5 2019

Kĩ thuật cô si ngược ý

NV
23 tháng 11 2021

\(y=\dfrac{x}{2}+\dfrac{18}{x}\ge2\sqrt{\dfrac{18x}{2x}}=6\)

\(y_{min}=6\) khi \(x=6\)

15 tháng 11 2019

\(G=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)

\(=1-\frac{2}{x^2+1}\)

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\frac{2}{x^2+1}\le2\)

\(\Rightarrow-\frac{2}{x^2+1}\ge-2\)

\(\Rightarrow1-\frac{2}{x^2+1}\ge-1\)

Vậy \(G_{min}=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)