K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2019

a/ Gọi O là giao điểm AC và BD

Trong mặt phẳng (SBD), nối SO cắt BN tại I \(\Rightarrow I=BN\cap\left(SAC\right)\)

b/ Nối MD cắt AC tại P

Trong mặt phẳng (SMD), nối MN cắt SP tại J

\(\Rightarrow J=MN\cap\left(SAC\right)\)

c/ Ba mặt phẳng (SAC); (BCN), (SDM) cắt nhau theo 3 giao tuyến phân biệt CI, MN, SP.

Mà SP cắt MN tại J \(\Rightarrow\) CI đi qua J hay C;I;J thẳng hàng

29 tháng 8 2021

Điểm M và N lần lượt  thuộc các cạnh BC ,SD

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}M \in SA \subset \left( {SAC} \right)\\N \in SC \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow MN \subset \left( {SAC} \right)\)

b) Ta có:

\(\left. \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow O \in \left( {SAC} \right) \cap \left( {SB{\rm{D}}} \right)\)

NV
10 tháng 12 2021

a.

Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow OJ\) là đường trung bình tam giác SAC

\(\Rightarrow OJ||SA\)

Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)

\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)

b. O là trung điểm BD, I là trung điểm BC

\(\Rightarrow OI\) là đườngt rung bình tam giác BCD

\(\Rightarrow OI||CD\)

Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)

Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)

c. Ta có I là trung điểm BC, O là trung điểm AC

\(\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\) 

\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)

Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)

\(\Rightarrow MK||\left(SBC\right)\)

NV
10 tháng 12 2021

undefined

22 tháng 9 2023

a) Gọi \(O\) là tâm của đáy

\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AB\)

\(I\) là trung điểm của \(AB\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow IJ\) là đường trung bình của hình vuông \(ABCD\)

\(\left. \begin{array}{l} \Rightarrow IJ\parallel A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow IJ \bot AB\)

Ta có:

\(\left. \begin{array}{l}SO \bot AB\\IJ \bot AB\end{array} \right\} \Rightarrow AB \bot \left( {SIJ} \right)\)

b) Kẻ \(IH \bot SJ\left( {H \in SJ} \right),OK \bot SJ\left( {K \in SJ} \right) \Rightarrow IH\parallel OK\)

\(O\) là trung điểm của \(IJ \Rightarrow IH = 2{\rm{O}}K\)

Ta có:

\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {AB,SC} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right)\)

\(\begin{array}{l}\left. \begin{array}{l}\left. \begin{array}{l}AB \bot \left( {SIJ} \right)\\C{\rm{D}}\parallel AB\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SIJ} \right) \Rightarrow C{\rm{D}} \bot IH\\ & IH \bot SJ\end{array} \right\} \Rightarrow IH \bot \left( {SC{\rm{D}}} \right)\\ \Rightarrow d\left( {AB,C{\rm{D}}} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right) = IH\end{array}\)

\(O\) là trung điểm của \(IJ\), \(IH\parallel {\rm{O}}K\)\( \Rightarrow IH = 2{\rm{O}}K\)

\(O\) là trung điểm của \(B{\rm{D}}\)

\(J\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow OJ\) là đường trung bình của \(\Delta BCD\)

\( \Rightarrow OJ = \frac{1}{2}BC = \frac{a}{2}\)

\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SAO\) vuông tại \(O\)\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}}  = \frac{{a\sqrt 6 }}{2}\)

\(\Delta SOJ\) vuông tại \(O\) có đường cao \(OK\)

\( \Rightarrow OK = \frac{{SO.OJ}}{{\sqrt {S{O^2} + O{J^2}} }} = \frac{{a\sqrt {42} }}{{14}}\)

\( \Rightarrow d\left( {AB,C{\rm{D}}} \right) = IH = 2OK = \frac{{a\sqrt {42} }}{7}\)

25 tháng 5 2017

a) S, I, J, G là điểm chunng của (SAE) và (SBD)

b) S, K, L là điểm chung của (SAB) và (SDE)

30 tháng 10 2023

a: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình

=>MN//BD

BD//MN

\(MN\subset\left(AMN\right)\)

BD không thuộc mp(AMN)

Do đó: BD//(AMN)

b: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Chọn mp(SBD) có chứa MN

(SBD) giao (SAC)=SO(cmt)

Gọi K là giao điểm của SO với MN

=>K là giao điểm của MN với mp(SAC)