K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

ĐKXĐ: \(x\ge0;x+y-4\ge0\) 

\(PT_{\left(1\right)}\Leftrightarrow\left(\sqrt{x^2+3}-2\right)+\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{x-1}{\sqrt{x}+1}+\frac{x-1}{\sqrt{x+3}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left[\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right]=0\)

Cái ngoặc to vô nghiệm. Vậy x = 1.

Thay xuống PT (2) \(\Leftrightarrow3+\sqrt{y-3}=5\left(Đ\text{K:}y\ge3\right)\Leftrightarrow\sqrt{y-3}=2\Leftrightarrow y=7\)

Vậy x = 1; y = 7

P/s: Em ko chắc.

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

27 tháng 5 2017

dễ kích cho mình mình sẽ giải thích cho

2 tháng 2 2020

\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)

Vậy HPT có nghiệm.....

2 tháng 2 2020

\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)

Vậy HPT có nghiệm.....

2 tháng 4 2020

em ko biết làm :">

\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)

\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)

\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)

\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)

\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)

\(\Leftrightarrow6x+2y-6x+3y=6-21\)

\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)

\(\Rightarrow x=\frac{7-3}{2}=2\)

2 tháng 4 2020

\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)

\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)

\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)

\(\Leftrightarrow x+3-2\sqrt{2}=2\)

\(\Leftrightarrow x=2\sqrt{2}-1\)

3 tháng 1 2020

1) \(x^3-3x^2y-4x^2+4y^3+16xy=16y^2\Leftrightarrow x^3-3x^2y-4x^2+4y^3+16xy-16y^2=0\)

đưa về phương trình tích : \(\left(x-2y\right)^2\left(x+y-4\right)=0\) tới đây ok chưa

3 tháng 1 2020

3)  ĐK : x \(\ge\)0 ; \(y\ge3\)\(\Rightarrow x+y>0\)

đặt \(\sqrt{x+y}=a;\sqrt{x+3}=b\)

\(\Rightarrow y-3=\left(x+y\right)-\left(x+3\right)=a^2-b^2\)

PT : \(\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\Leftrightarrow3\sqrt{x+y}+3\sqrt{x+3}=y-3\)

\(\Leftrightarrow3\left(a+b\right)=a^2-b^2\Leftrightarrow\left(a+b\right)\left(3-a+b\right)=0\Leftrightarrow\orbr{\begin{cases}a+b=0\\a-b=3\end{cases}}\)

Mà a + b = \(\sqrt{x+y}+\sqrt{x+3}>0\)nên loại

a - b  = 3 thì \(\sqrt{x+y}-\sqrt{x+3}=3\), ta có HPT : \(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x+3}=3\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)

\(\Rightarrow\)\(\sqrt{x}+\sqrt{x+3}=x\Leftrightarrow\sqrt{x+3}=x-\sqrt{x}\Leftrightarrow x^2-2x\sqrt{x}-3=0\Leftrightarrow x=\left(1+\sqrt[3]{2}\right)^2\)

từ đó tìm đc y

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

5 tháng 7 2017

giúp câu 2

5 tháng 7 2017

\(4\left(x^2+xy+y^2\right)=3\left(x+y\right)^2+\left(x-y\right)^2.\)
Đặt (x+y)=a ; (x-y)=b là ok nhé !!!!