K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

 Dễ ẹt

Ghi theo tớ là đc 10+ đấy:

Trả lời:Em quên mang phao mong cô thông cảm

21 tháng 11 2019

\(P\le\Sigma_{cyc}\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{abc}\)

12 tháng 5 2017

Ta có:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)

Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:

\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

Tương tự ta có:

\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)

Cộng 3 cái trên vế theo vế ta được

\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

\(\Rightarrow\)ĐPCM

12 tháng 5 2017

demonstrate that \(a^3+b^3\ge ab\left(a+b\right)\)

8 tháng 9 2019

Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0

<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)

<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)

=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)

<=> A\(\le\frac{1}{abc}\)

Dấu "=" xảy ra <=> a=b=c>0

8 tháng 9 2019

Liên hệ giữa phép chia và phép khai phương

13 tháng 12 2018

C/m: BDT:  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)   (1)

That vay ta co:

\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\)   (luon dung)

Tuong tu ta co:  \(b^3+c^3+abc\ge bc\left(a+b+c\right)\)  (2)

                         \(c^3+a^3+abc\ge ca\left(a+b+c\right)\)   (3)

Tu (1), (2), (3)  suy ra:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)   (dpcm)

21 tháng 7 2018

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

BĐT đầu đúng => \(a^3+b^3\ge ab\left(a+b\right)\)đúng. Dấu "=" xảy ra <=> a=b

Áp dụng vào bài toán: \(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 cái trên lại: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)\(=\frac{c+a+b}{abc\left(a+b+c\right)}=\frac{1}{abc}.\)(đpcm)

Dấu "=" xảy ra <=> a=b=c.

21 tháng 7 2018

một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường

giải hộ mk nha

23 tháng 3 2016

Ừ thì sai đề vô căn cứ đây!

Dễ dàng chứng minh bất đẳng thức phụ với  \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi  \(a>b\) và  \(ab>0\)

Ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)  \(\Leftrightarrow\)  \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)  \(\left(1\right)\)

Hoàn toàn tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)  \(\left(2\right)\)  và  \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)  \(\left(3\right)\) 

Cộng từng vế \(\left(1\right);\)  \(\left(2\right)\)  và  ​\(\left(3\right)\), ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

23 tháng 3 2016

bạn xem lại dấu BĐT ?

bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai

13 tháng 4 2016

tt bài trên

6 tháng 7 2019

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

6 tháng 7 2019

cảm ơn ạ