cho a thuộc N và (10+a) chia hết cho a
1/ chứng minh rằng 5 chia hết cho a
2/ tìm a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
mình biết câu a
a=[n+10].[n+15]chia hết cho 2
khi n là số chẵn thì n +10 sẽ chia hết cho 2
khi n là số lẻ thì 15+n sẽ chia hết cho 2
nên a chia hết cho 2
a)nếu n=2k(kEN)
thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2
nếu n=2k+1(kEN)
thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2
Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2
b)(4n-5) chia hết cho 2n-1
4n-2-3 chia hết cho 2n-1
2(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}
=>2nE{2;4}
=>n E{1;2}
Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
giúp mình với
1/
vì \(10+a⋮a\)
\(a⋮a\)
\(\Rightarrow\left(10+a\right)-a⋮a\)
\(\Rightarrow10⋮a\)
\(\Rightarrow5.\left(2\right)⋮a\)
2/
vì \(10⋮a\)\(\Rightarrow a\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
=> \(a\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)