K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

ĐKXĐ: \(x\ge\frac{5}{2}\)

\(pt\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+9}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)

\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)

\(\Leftrightarrow\sqrt{2x-5}=5\)

\(\Leftrightarrow2x-5=25\)

\(\Leftrightarrow x=15\left(TM\right)\)

Vậy phương trình đã cho có nghiệm duy nhất \(x=15\)

19 tháng 11 2019

@Nguyễn Việt Lâm

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

1: =>3x^2+5x-7=3x+14

=>2x=21

=>x=21/2

2;=>x+4=4

=>x=0

3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{2}\\4x^2-20x+25-4x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{2}\\4x^2-24x+32=0\end{matrix}\right.\)

=>x>=5/2 và x^2-6x+8=0

=>x=4

4: \(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2+2x-1=x^2-2x+1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

5: \(\Leftrightarrow\sqrt{2x+16}=x-4\)

=>x>=4 và x^2-8x+16=2x+16

=>x>=4 và x^2-10x=0

=>x=10

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Câu 6:

ĐK: $x\geq 1$

PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$

$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$

$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$

Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:

$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)

Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:

$1-\sqrt{x-1}=\sqrt{x-1}+1$

$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)

Vậy PT có nghiệm $x=1$

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Câu 5:

ĐK: $x\geq 1$

PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$

$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$

$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$

$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$

$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.

22 tháng 8 2019

\(DK:x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=0\)

\(\Leftrightarrow x=\frac{5}{2}\left(n\right)\)

Vay PT co nghiem la \(x=\frac{5}{2}\)

16 tháng 7 2018

\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)

\(\text{ |}\sqrt{2x-5}+3\text{ |}+\text{ |}\sqrt{2x-5}-1\text{ |}=4\)

\(\sqrt{2x-5}+3+\text{ |}\sqrt{2x-5}-1\text{ |}=4\) ( x ≥ \(\dfrac{5}{2}\) ) ( 1)

+) Với : \(\sqrt{2x-5}\text{≥}1\) ⇔ x ≥ 3 , ta có :

\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\text{⇔}2\sqrt{2x-5}=2\)

\(\text{⇔}x=3\left(TM\right)\)

+) Với : \(\sqrt{2x-5}< 1\) ⇔ x < 3 , ta có :

\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)

\(\text{⇔}4=4\) ( luôn đúng với : \(3>x\text{≥}\dfrac{5}{2}\) )

KL...............

16 tháng 10 2018

\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{2x-5-6\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-5}-3+\sqrt{2x-5}+1=4\\\sqrt{2x-5}-3+\sqrt{2x-5}+1=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{2x-5}-2=4\\2\sqrt{2x-5}-2=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{2x-5}=6\\2\sqrt{2x-5}=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2x-5}=3\\\sqrt{2x-5}=-1\left(L\right)\end{cases}}\)

\(\Leftrightarrow2x-5=9\)

\(\Leftrightarrow x=7\)