K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

25 tháng 8 2023

\(\left(2x-1\right)\left(y-7\right)=22\)

\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)

25 tháng 8 2023

cách kiếm xu kiểu gì

 

1 tháng 4 2016

Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2

=> 2x + 3y chia hết cho 2

=> 2x chia hết cho 2

=> 3y chia hết cho 2

Vì ƯC(2;3) = 1

=> 3y chia hết cho 2 => y chia hết cho 2

=> 3y ≤ 14

=> y ≤ 14/3

=> y ≤ 4

=> y = 2 ; y = 4

Với y = 2 => 2x + 3 - 2 = 14=> x = 4

       y = 4 => 2x + 3 . 4 = 14 => x = 1

Vậy với x = 2 thì y = 4

              x = 4 thì y = 2

             

1 tháng 4 2016

Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2

=> 2x + 3y chia hết cho 2

=> 2x chia hết cho 2

=> 3y chia hết cho 2

Vì ƯC(2;3) = 1

=> 3y chia hết cho 2 => y chia hết cho 2

=> 3y ≤ 14

=> y ≤ 14/3

=> y ≤ 4

=> y = 2 ; y = 4

Với y = 2 => 2x + 3 - 2 = 14=> x = 4

       y = 4 => 2x + 3 . 4 = 14 => x = 1

Vậy với x = 2 thì y = 4

              x = 4 thì y = 2

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$2x-xy+3y=9$

$\Rightarrow x(2-y)+3y=9$

$\Rightarrow x(2-y)-3(2-y)=3$

$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:

TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm) 

TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương) 

TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)

TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)

NV
26 tháng 12 2020

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

NV
26 tháng 12 2020

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp