Cho a,b,c là các số nguyên dương thõa mãn: a^2+b^2=c^2(1+ab)
CMR: A>/=C,B>/=C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}a+b=x\\a+c=y\\b+c=z\end{cases}}\)
Do a+b+c = 1 \(\Leftrightarrow x+y+z=2\)
Ta có :
\(\text{Sima}\frac{a+bc}{b+c}=\text{Sima}\frac{a\left(a+b+c\right)+bc}{b+c}=\text{Sima}\frac{a^2+ab+ac+bc}{b+c}=\text{Sima}\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)
\(=\text{Sima}\frac{xy}{z}=\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\)
Ta có : \(2\text{Sima}\frac{xy}{z}=\left(\frac{xy}{z}+\frac{xz}{y}\right)+\left(\frac{xy}{z}+\frac{yz}{x}\right)+\left(\frac{xz}{y}+\frac{yz}{x}\right)\)
\(\ge2x+2y+2z\)
\(\Rightarrow\text{Sima}\frac{xy}{z}\ge x+y+z=2\) hay \(\text{Sima}\frac{a+bc}{b+c}\ge2\)(đpcm)
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
Áp dụng BĐT Cauchy- schwarz:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}\)\(+\frac{1}{ab+bc+ca}\)
\(+\frac{2007}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{6030}{\left(a+b+c\right)^2}\ge670\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
câu 1: cạnh nào cũng nhỏ hơn 60
câu 2: số nguyên dương nào chẳng được
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.