K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Hình dễ tự vẽ

a ) + b )Ta có \(\widehat{MPQ}=90^o\)( góc nội tiếp chắn nửa đường tròn ) ; \(EF\perp MQ\Rightarrow\widehat{EPQ}+\widehat{EFQ}=90^o+90^o=180^o\)=> tứ giác PEFQ nội tiếp đường tròn đường kính PQ 

Tương tự => \(\widehat{ENM}+\widehat{EFM}=90^o+90^o=180^o\)=> tứ giácMNEF nội tiếp => \(\widehat{PFQ}=\widehat{PEQ}\)( hai góc nội tiếp cùng chắn cung PQ trong đường tròn đường kính EQ )

\(\widehat{NFM}=\widehat{NEM}\)( hai góc nội tiếp cùng chắn cung MN trong đường tròn đường kính ME )

\(\widehat{NEM}=\widehat{PEQ}\)(  hai góc đối đỉnh ) , \(\widehat{PFQ}=\widehat{MFK}\)(  hai góc đối đỉnh ) 

\(\Rightarrow\widehat{NFM}=\widehat{KFM}\)hay FM là tia phân giác của \(\widehat{NFK}\)

c) Có : \(\widehat{NPM}=\widehat{NQM}\)(  hai góc nội tiếp cùng chắn cung MN trong đường tròn đường kính MQ )

\(\widehat{EPF}=\widehat{EQF}\)( hai góc nội tiếp cùng chắn cung EF trong đường tròn đường kính EQ )

\(\Rightarrow\widehat{NPE}=\widehat{EPL}\) => PE là phân giác trong của \(\Delta NPL\). Lại có \(PE\perp PQ\)=> PE  là phân giác ngoài của \(\Delta NPL\Rightarrow\frac{EN}{EL}=\frac{QN}{QL}\Rightarrow EN.QL=QN.EL\)(đpcm)

5 tháng 6 2019

CÓ ĐÚNG KHÔNG THẾ?

10 tháng 2 2019

Gợi ý thôi cx được nhưng mà gợi ý theo kiểu chi tiết nhé , đừng bảo là kẻ cái này cái nọ rồi tự giải thì mik chịu :D 

10 tháng 2 2019

Nhanh nhé , làm xong , mik sẽ

a: góc FEQ=góc FMQ=90 độ

=>FMEQ nội tiếp

Tam I là trung điểm của FQ

12 tháng 8 2021

ta có MNPQ là hình thang=>MN//PQ

mà \(=\angle\left(NMP\right)=\angle\left(MNQ\right)=>\angle\left(NQP\right)=\angle\left(MPQ\right)\)

=>tam giác MNO cân tại O=>MO=NO

=>tam giác QOP cân tại O=>OQ=Op

=>MO+OP=NO+OQ=>NQ=MP

=>MNPQ là hình thang cân

\(=>\angle\left(M\right)=\angle\left(N\right)\left(1\right)\)

\(\angle\left(Q\right)=\angle\left(P\right)\left(2\right)\)

mà EF//PQ=>EF//MN

=>MNFE là hình thang(3)

từ (1)(3)=>MNFE là hình thang cân

=>EFPQ là hình thang(4)

(2)(4)=>EFPQ là hình thang cân

Ta có: \(\widehat{OMN}=\widehat{OPQ}\)

\(\widehat{ONM}=\widehat{OQP}\)

mà \(\widehat{OMN}=\widehat{ONM}\)

nên \(\widehat{OPQ}=\widehat{OQP}\)

Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)

nên ΔOMN cân tại O

Xét ΔOPQ có \(\widehat{OPQ}=\widehat{OQP}\)

nên ΔOPQ cân tại O

Ta có: OM+OP=MP

ON+OQ=QN

mà OM=ON

và OP=OQ

nên MP=QN

Hình thang MNPQ có MP=QN

nên MNPQ là hình thang cân

Suy ra: \(\widehat{EMN}=\widehat{FNM}\) và \(\widehat{EQP}=\widehat{FPQ}\)

Hình thang EMNF có \(\widehat{EMN}=\widehat{FNM}\)

nên EMNF là hình thang cân

Hình thang EQPF có \(\widehat{EQP}=\widehat{FPQ}\)

nên EQPF là hình thang cân

25 tháng 12 2017

M N P Q A F E 1 1 1 1 2 3 1 2 3 1 2 1 2 2 3

MEAF là HCN vì M1=F1=E1=90 độ

b.QMN cân tại M ( -> Góc FQA=Góc N1)

Có  QFA=AEN=90 ĐỘ

-> T/G QFA đồng dạng vs NEA ->  A3=N1=FQA-> T/G QFA vuông cân tại F ->  FQ=FA=ME

-Xét 2 tam giác PQF=QME(C.G.C)

-> QE=PF( 2 cạnh tương ứng ) -> P1=Q1 ( góc tương ưng )

 có F3+P1=90 ĐỘ ( tam giác vuông ) mà P1=Q1 ->  F3+Q1=90 ĐỘ -> QE vuông góc vs PF

c.Có FA+AE=ME+EN=MN( không đổi =>FA.AE lớn nhất khi FA=AE => MEAF là hình vuông khi A trùng vs giao điểm 2 đường chéo của hình vuông MNPQ 

Diện tích hình vuông MEAF là FA.AE