Cho a,b,c>0. Chứng minh: \(\sqrt{\frac{a}{a+2b}}+\sqrt{\frac{b}{b+2c}}+\sqrt{\frac{c}{c+2a}}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Theo e nghĩ là đề phải như này cơ ạ :
\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)
Biến đổi và sử dụng Cô - si là sẽ ra :
Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)
\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đề không sai đâu:P
\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)
\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)
Áp dụng BĐT AM-GM:
\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)
\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)
Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:
\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)
Áp dụng BĐT Cauchy_Schwarz và AM-GM:
\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)
\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)
Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.
Dấu "=" xảy ra khi $a=b=c$
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Lời giải:
Với $a,b,c>0$ dễ thấy $0< \frac{a}{a+2b}< 1$
$\Rightarrow 0< \sqrt{\frac{a}{a+2b}}< 1$
$\Rightarrow \sqrt{\frac{a}{a+2b}}> \frac{a}{a+2b}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
$\text{VT}> \frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\geq \frac{(a+b+c)^2}{a^2+2ba+b^2+2cb+c^2+2ac}=1$
Do đó $\text{VT}>1$ (đpcm)
Sử dụng BĐT AM-GM:
\(VT=\sum\limits_{cyc} \sqrt{\frac{a}{a+2b}} =\sum\limits_{cyc} \frac{a}{\sqrt{a(a+2b}}\geq \sum\limits_{cyc} \frac{2a}{2(a+b)}\)
\(=\sum\limits_{cyc} \frac{a^2}{a^2 +ab} \ge \frac{(a+b+c)^2}{a^2+b^2+c^2+ab+bc+ca} >\frac{(a+b+c)^2}{a^2+b^2+c^2+2ab+2bc+2ca} = 1\) (đpcm)
P/s: Em không chắc lắm.
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)
Thật vậy, theo AM-GM ta có:
\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)
\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Áp dụng BĐT AM-GM với chú ý: \(a+b,b+c,c+a< a+b+c\) với mọi a, b, c >0.
Ta có:\(VT=\Sigma_{cyc}\frac{a}{\sqrt{a\left(a+2b\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+a+2b}{2}}=\Sigma_{cyc}\frac{a}{a+b}>\Sigma_{cyc}\frac{a}{a+b+c}=1\)
qed./.