Rút gọn : \(\frac{-x+1}{3x^2-22x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left|x-1\right|+\left|x\right|-x}{3x^2+4x+1}=\frac{1-x-x-x}{3x^2+3x+x+1}=\frac{1-3x}{\left(x+1\right)\left(3x+1\right)}\)
\(B=\frac{\left|2x-1\right|+x}{3x^2-22x+7}=\frac{1-2x+x}{3x^2-21x-x+7}=\frac{1-x}{\left(x-7\right)\left(3x-1\right)}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b) Với \(x=6013\)( thỏa mãn ĐKXĐ )
Thay \(x=6013\)vào biểu thức ta được:
\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)
a)\(A=\frac{x+1}{x^2+2x+1}:\left(\frac{1}{x^2-x}+\frac{1}{x-1}\right)\left(ĐK:x\ne0;x\ne1\right)\)
\(=\frac{x+1}{\left(x+1\right)^2}:\frac{1+x}{x\left(x-1\right)}\)
\(=\frac{1}{x+1}\cdot\frac{x\left(x+1\right)}{x+1}=\frac{x}{x+1}\)
b)Có: \(x^2+x-2=0\\ \Leftrightarrow x^2-x+2x-2=0\\ \Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\left(loại\right)\\x=-2\end{array}\right.\)
Thay x=-2 vào A ta có
\(A=\frac{-2}{-2+1}=\frac{-2}{-1}=2\)