K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Ta có:

\(x^2+x+1\\ =\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

=> ĐPCM

13 tháng 11 2019

Đặt : \(A=x^2+x+1\)
=> \(A=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
=> \(A\ge\frac{3}{4},\forall x\)
=> A > 0, \(\forall x\)

Vậy : A > 0

27 tháng 10 2018

a ) Đề sai

b ) \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\left(đpcm\right)\)

c ) \(x-x^2-2=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{7}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}< 0\forall x\left(đpcm\right)\)

5 tháng 12 2016

\(3x^2-7x-10=3x\left(x+1\right)-10\left(x+1\right)=\left(x+1\right)\left(3x-10\right)\)

\(3\left(x+2\right)-x\left(x+2\right)=0\Leftrightarrow\left(x+2\right)\left(3-x\right)\)\(\hept{\begin{cases}x=-2\\x=3\end{cases}}\)

\(x^2-8x+19=x^2-2.4x+16+3=\left(x-4\right)^2+3\)\(\ge3>0\left(dpcm\right)\)

18 tháng 10 2019

b) \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\inℝ\)

c) \(x-x^2-2=-\left(x^2-x+2\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{7}{4}< 0\forall x\inℝ\)

20 tháng 10 2019

câu a thì sao