Số tự nhiên nhỏ nhất có ba chữ số mà khi chia số đó cho 44 thì dư 11, chia cho 2525 thì dư 33 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm số tự nhiên nhỏ nhất có ba chữ số sao cho khi chia a cho 11 thì dư 5, khi chia a cho 13 thì dư 8
Gọi a là số cần tìm .
Theo đề :
\(\Rightarrow\hept{\begin{cases}a-7⋮11\\a-11⋮13\end{cases}\Rightarrow\hept{\begin{cases}a-7+22⋮11\\a-11+26⋮13\end{cases}}\Rightarrow\hept{\begin{cases}a-15⋮11\\a-15⋮13\end{cases}}}\)
\(\Rightarrow a-15\in BC\left(11,13\right)\)
\(\Rightarrow BC\left(11,13\right)=B\left(143\right)=\left\{0;143;286;...\right\}\)
Mà a là số tự nhiên nhỏ nhất có ba chữ số \(\Rightarrow a-15\in\left\{143\right\}\)
\(\Rightarrow a=143+15\Rightarrow a=158\)
Vậy a = 158
P/s: Hình như mình làm sai , mong các bạn thông cảm
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$