Cho tam giác ABC cân tại A có D, E, F lần lượt là trung điểm của AB, AC và BC .
Từ A kẻ Ax song song với BC ; FD cắt Ax tại M .
a) Chứng minh tứ giác ACFM là hình bình hành.
b) Chứng minh tứ giác AFBM là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
D là TĐ của AB mà DE //BC nên DE là đg TB của tam giác ABC -->E là TĐ của AC.
E là TĐ của AC mà EF //AB nên EF là đg TB của tam giác CAB--->F là TĐ của BC
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB
hay ABNM là hình thang
1. Xét tam giác ABC ta có:
E, D lần lượt là trung điểm của AB và AC (gt)
=> ED là đường trung bình của tam giác ABC.
=> ED // BC
=> tứ giác BCDE là hình thang
Mà góc EBC = góc ECB ( tam giác ABC cân tại A)
Nên tứ giác BCDE là hình thang cân
2. Xét tam giác ABH ta có:
E là trung điểm của AB (gt)
EF // AH (gt)
=> F là trung điểm của BH