Cho 10a^2 = 10b^2 + c^2
CMR: ( 7a - 3b + 2c )( 7a - 3b - 2c ) - (3a - 7b )^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
Ta có: \(\left(x-y\right)\left(x+y\right)=\left(x^2-y^2\right)\)
\(\Rightarrow\left(7a-3b+2c\right)\left(7a-3b-2c\right)=\left(7a-3b\right)^2-\left(2c\right)^2\)
\(=49a^2-42ab+9b^2-4c^2\)
\(=49a^2-42ab+9b^2-4\left(10a^2-10b^2\right)\)
\(=9a^2-2.3.7ab+49b^2=\left(3a-7b\right)^2\left(ĐPCM\right)\)
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
Đề sai sửa lại là
(7a - 3b + 2c ) (7a - 3b - 2c ) = (3a - 7b )2
Ta có VT = ( 7a - 3b)2 - 4c2 = (3a - 7b )2 + 40a2 - 40b2 - 4c2 = (3a - 7b )2 = VP
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
a) 3a + 4b - 5c - 2a - 3b + 5c
= ( 3a - 2a ) + ( 4b - 3b ) - ( 5c - 5c )
= a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= ( 7a - 3a - 4a ) + ( 3b + 2b + b ) - ( 4c + 2c + 2c )
= 6b - 8c
a) 3a + 4b - 5c - 2a - 3b + 5c
= (3a - 2a) + (4b - 3b) - (5c - 5c)
= a + b - 0 = a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= (7a - 3a - 4a) + (3b + 2b + b) - ( 4c + 2c + 2c)
= 0 + 6b - 8c = 6b - 8c