|x+1/2|+|3-y|=0
Giúp mình với các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{3}=\frac{y-1}{4}=\frac{z+2}{5}=\frac{z-1+y-1+z+2}{3+4+5}=\frac{-36}{12}=-3\)
=> \(\hept{\begin{cases}\frac{x-1}{3}=-3\\\frac{y-1}{4}=-3\\\frac{z+2}{5}=-3\end{cases}}\) => \(\hept{\begin{cases}x-1=-9\\y-1=-12\\z+2=-15\end{cases}}\) => \(\hept{\begin{cases}x=-8\\x=-11\\x=-13\end{cases}}\)
Vậy ...
\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)
=> Biểu thức A phụ thuộc vào giá trị của y
\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
Vì |1/4 - x| ≥ 0; |x - y + z| ≥ 0; |2/3 + y| ≥ 0
=> |1/4 - x| + |x - y + z| + |2/3 + y| ≥ 0
Dấu " = " xảy ra <=>. \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\\frac{1}{4}-y-\frac{2}{3}=0\\y=\frac{-2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-5}{12}\\z=\frac{-2}{3}\end{cases}}\)
Vậy ....
Ta có: \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|3-y\right|\ge0\forall y\end{cases}\Rightarrow\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\forall x;y}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\3-y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)
Vậy \(x=-\frac{1}{2};y=3\)