K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 8 2020

2.

Chắc đề là \(2cos^2x-3\sqrt{3}sin2x-4sin^2x=-4\)

\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2cos^2x-6\sqrt{3}sinx.cosx+4cos^2x=0\)

\(\Leftrightarrow6cos^2x-6\sqrt{3}sinx.cosx=0\)

\(\Leftrightarrow6cosx\left(cosx-\sqrt{3}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Các nghiệm thuộc đoạn đã cho: \(\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{\pi}{6};\frac{7\pi}{6}\right\}\) có 4 nghiệm thỏa mãn

NV
30 tháng 8 2020

1.

\(2sin^2x+4sinx.cosx=3-3cos^2x\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Rightarrow2tan^2x+4tanx=3\left(1+tan^2x\right)-3\)

\(\Leftrightarrow2tan^2x+4tanx=3tan^2x\)

\(\Leftrightarrow tan^2x-4tanx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=arctan\left(4\right)+k\pi\end{matrix}\right.\)

Các nghiệm thỏa mãn là: \(\left\{-\pi;0;\pi;arctan\left(4\right)-\pi;arctan\left(4\right)\right\}\)

Có 5 nghiệm trên đoạn đã cho

2 tháng 10 2017

Chọn đáp án A

2 tháng 3 2019

Chọn D.

Phương pháp: Giải phương trình và tìm nghiệm âm lớn nhất, nghiệm dương nhỏ nhất.

Cách giải: Ta có:

Vậy tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình  2 sin   2 x   -   2 cos   2 x   = 2  

17 tháng 4 2019

Chọn D

 

16 tháng 9 2018

30 tháng 11 2018

Chọn D

17 tháng 7 2021

`2sin^2x+\sqrt3sin2x=3`

`<=>2. (1-cos2x)/2 + \sqrt3sin2x=3`

`<=>\sqrt3sin2x-cos2x=2`

`<=> \sqrt3/2 sin2x-1/2 cos2x=1`

`<=>sin (2x-π/6) = 1`

`<=> 2x-π/6=π/2+k2π`

`<=> x=π/3+kπ (k \in ZZ)`.

NV
17 tháng 7 2021

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

31 tháng 12 2019