Cho hàm số y=(m-1)x+2m-5 (d1)
a. Tính giá trị của m để đg thẳng d1 song song bs đg thẳng y=3x+1 d2
b. Vs giá trị nào của m thì dg thẳng d1 và d2 cắt nhau tại 1 điểm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
a: Để hàm số y=(m-1)x+3 đồng biến trên R thì m-1>0
=>m>1
Để hàm số y=(m-1)x+3 nghịch biến trên R thì m-1<0
=>m<1
b: Thay m=3 vào (d), ta được:
\(y=\left(3-1\right)x+3=2x+3\)
Vẽ đồ thị:
c: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-1=2\\3\ne-1\left(đúng\right)\end{matrix}\right.\)
=>m-1=2
=>m=3
d: Thay x=-2 và y=0 vào (d1), ta được:
\(-2\left(m-1\right)+3=0\)
=>-2(m-1)=-3
=>\(m-1=\dfrac{3}{2}\)
=>\(m=\dfrac{3}{2}+1=\dfrac{5}{2}\)
Bài 1)
a) Xét phương trình hoành độ giao điểm: \(2x+3+m=3x+5-m\)
\(\Leftrightarrow x=3+m+m-5\Leftrightarrow x=2m-2\)
Để giao điểm của hai đường thẳng trên nằm trên trục tung thì \(2m-2=0\Leftrightarrow m=1\)
b) Do (d) // (d') nên (d) có phương trình \(y=-\frac{1}{2}x+b\)
Do (d) cắt trục hoành tại điểm có hoành độ x = 10 nên điểm (10;0) thuộc đường thẳng (d0.
Vậy thì \(0=-\frac{1}{2}.10+b\Leftrightarrow b=5\)
Vậy phương trình đường thẳng (d) là \(y=-\frac{1}{2}x+5\)
Bài 2)
a) Để (d1)//(d2) thì \(4m=3m+1\Leftrightarrow m=1\)
b) Để (d1)//(d2) thì \(4m\ne3m+1\Leftrightarrow m\ne1\)
Khi m = 2, ta có phương trình hoành độ giao điểm là:
\(8x-7=7x-7\Leftrightarrow x=0\)
Với \(x=0,y=-7\)
Vậy tọa độ giao điểm của (d1) và (d2) là (0; -7)
a: Thay x=-2 và y=-2 vào (d1), ta đc:
-2(2m+1)+m-3=-2
=>-4m-2+m-3=-2
=>-3m-5=-2
=>-3m=3
=>m=-1
b: Tọa độ giao của (d2) với trục hoành là:
y=0 và (2a+1)x+4a-3=0
=>x=-4a+3/2a+1
Để x nguyên thì -4a-2+5 chia hết cho 2a+1
=>\(2a+1\in\left\{1;-1;5;-5\right\}\)
=>\(a\in\left\{0;-1;2;-3\right\}\)
b) d 1 cắt trục hoành tại điểm có hoành độ bằng – 3 khi:
0 = -3m + 2m - 1 ⇔ -m - 1 = 0 ⇔ m = -1
Vậy với m = -1 thì d 1 cắt trục hoành tại điểm có hoành độ bằng – 3
a/ Để (d1) song song (d2)
\(\Leftrightarrow\left\{{}\begin{matrix}m-1=3\\2m-5\ne1\end{matrix}\right.\) \(\Rightarrow m=4\)
b/ Giao điểm A của (d2) và trục hoành:
\(y=0\Rightarrow3x+1=0\Rightarrow x=-\frac{1}{3}\Rightarrow A\left(-\frac{1}{3};0\right)\)
Để (d1) và (d2) cắt nhau trên trục hoành \(\Leftrightarrow\) (d1) đi qua A
\(\Leftrightarrow-\frac{1}{3}\left(m-1\right)+2m-5=0\Rightarrow m=\frac{14}{5}\)
a: Để (d1)//(d2) thì m-1=3
hay m=4
b:
Thay y=0 vào y=3x+1, ta được:
3x+1=0
hay x=-1/3
Để (d1) và (d2) cắt nhau tại một điểm trên trục hoành thì (d1) đi qua (-1/3;0)
Thay x=-1/3 và y=0 vào (d1), ta được:
\(-\dfrac{1}{3}\left(m-1\right)+2m-5=0\)
=>-1/3m+1/3+2m-5=0
=>5/3m-14/3=0
=>5/3m=14/3
hay m=14/5
a) Để d1 trùng d2
Vậy m = 1, n = 5
b) Để d1 cắt d2 thì: m + 1 ≠ 2 ⇒ m ≠ 1
c) Để d1 song song d2
Vậy m = 1, n ≠ 5.
a/ \(\left\{{}\begin{matrix}m-1=3\\2m-5\ne1\end{matrix}\right.\) \(\Rightarrow m=4\)
b/ Giao điểm A của (d2) và trục hoành: \(\left\{{}\begin{matrix}y=0\\3x+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{1}{3};0\right)\)
Để (d1) qua A \(\Rightarrow-\frac{1}{3}\left(m-1\right)+2m-5=0\Rightarrow m=\frac{14}{5}\)