Chứng minh các bất đẳng thức sau bằng cách xét từng khoảng giá trị của biến:
a) A= x4+x3+x2+x+1 > 0
b) C=x8-x7+x4-x+1 >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
X1: HCl X2: H2S X3: FeCl2
X4: CuS X5: H2SO4 X6: O2
X7: S X8: H2O X9: Cl2
X10: FeCl3 X11:I2 X12: MnO2
Đáp án D
Chọn D
X1: HCl X2: H2S
X3: FeCl2 X4: CuS
X5: H2SO4 X6: O2
X7: S X8: H2O
X9: Cl2 X10: FeCl3
X11:I2 X12: MnO2
Đáp án D
X1: HCl
X2: H2S
X3: FeCl2
X4: CuS
X5: H2SO4
X6: O2
X7: S
X8: H2O
X9: Cl2
X10: FeCl3
X11:I2
X12: MnO2
a) \(A=\left(x^2-\frac{1}{2}x\right)^2+\frac{3}{4}\left(x+\frac{2}{3}\right)^2+\frac{2}{3}>0\)
Ko biết xét khoảng:v