K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)

Vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

4 tháng 9 2016

a) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

Do \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> đpcm 

b)  áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\left(\frac{a-c}{b-d}\right)^2\)=> đpcm

13 tháng 11 2019

Violympic toán 7

7 tháng 11 2017

Từ giả thiết: \(\frac{a}{b}=\frac{c}{d}\)=>ad=bc                                                  (1)

Ta có: ab(c2-d2)=abc2-abd2=acbc-adbd                                             (2)

          cd(a2-b2)=a2cd-b2cd=acad-bcbd                                             (3)

Từ (1) ,(2),(3)=> ab(c2-d2)=cd(a2-b2)=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)            (đpcm)

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

24 tháng 7 2019

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{ab}{cd}\)

\(\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}=\frac{ca+cb}{ac+ad}=\frac{bc+db}{da+db}=\frac{ca-bd}{ca-bd}=1\)

\(\Rightarrow ca+cb=ac+ad\Rightarrow cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

10 tháng 11 2016

em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122

7 tháng 1 2018

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )

TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )

\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)

Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

5 tháng 7 2015

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{ab}=\frac{c^2+d^2}{cd}\)

=> \(\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{c^2}{cd}+\frac{d^2}{cd}\)

=> \(\frac{a}{b}+\frac{b}{a}=\frac{c}{d}+\frac{d}{c}\)

 Mình chỉ làm được tới khúc này

11 tháng 5 2019

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)



\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

Trường hợp 1: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)

                         \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

Từ (3) và (4) suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Trường hợp 2: \(\frac{a+b}{c+d}=\frac{-\left(a-b\right)}{c-d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

                          \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ (5) và (6) suy ra \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)