K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(A=\left(9y^2-6xy+12y\right)+4x^2-16x+2012\)

\(=\left[\left(3y\right)^2-2.3y\left(x-2\right)+\left(x-2\right)^2\right]-\left(x-2\right)^2+4x^2-16x+2012\)

\(=\left(3y-x+2\right)^2+3x^2-12x+2008\)

\(=\left(3y-x+2\right)^2+3\left(x^2-2.x.2+4\right)-3.4+2008\)

\(=\left(3y-x+2\right)^2+3\left(x-2\right)^2+1996\ge1996\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3y-x+2=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=2\end{cases}}\)

2 tháng 10 2021

\(A=x^3-8-128-x^3=-136\\ B=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)

2 tháng 10 2021

\(A=\left(x-2\right)\left(x^2+2x+4\right)-\left(128+x^3\right)=x^3-8-128-x^3=-136\)

\(B=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)=8x^3+27y^3-27x^3+8y^3=-19x^3+35y^3\)

 

26 tháng 8 2016

A=2x^2+9y^2-6xy-6x-12y+2024 
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2024
A = (x -3y)^2 +4(x -3y) + 4 + x^2 -10x +25 + 1995
A = (x -3y +2)^2 + (x -5)^2 + 1995 \geq 1995
Min A = 1995 
 x - 5 = 0 => x = 5
Và x - 3y + 2 = 0 hay 5 -3y +2 = 0 => -3y = -7 => y = 7/3 


\(K\)\(nha!~!\)

23 tháng 8 2023

\(a,A=y^2-\dfrac{1}{2}y+\dfrac{1}{16}\)

\(=y^2-2.y.\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\)

\(=\left(y-\dfrac{1}{4}\right)^2\)

Với \(y=100,25\), ta được:

\(A=\left(100,25-\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{401}{4}-\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{400}{4}\right)^2=100^2=10000\)

\(------\)

\(b,B=4x^2-9y^2-6y-1\)

\(=\left(2x\right)^2-\left[\left(3y\right)^2+2.3y.1+1\right]\)

\(=\left(2x\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)

Với \(x=23;y=1\), ta được:

\(B=\left(2.23-3.1-1\right)\left(2.23+3.1+1\right)\)

\(=\left(46-4\right)\left(46+4\right)\)

\(=42.50=2100\)

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)

13 tháng 3 2019

a) A = 10000.                b) B = 2100.

a: A=x^2-6x+9+2=(x-3)^2+2>=2

Dấu = xảy ra khi x=3

b: B=x^2-20x+100+1=(x-10)^2+1>=1

Dấu = xảy ra khi x=10

d: C=x^2-16x+8+3

=(x-4)^2+3>=3

Dấu = xảy ra khi x=4

29 tháng 6 2021

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

29 tháng 6 2021

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4