K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

B C A D M E F

                                                  CM

a) Xét \(\Delta MBD\)và \(\Delta MEA\)có:

             \(\hept{\begin{cases}MD=MA\left(gt\right)\\\widehat{BMD}=\widehat{EMA}\left(2gocdoidinh\right)\\MB=ME\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MEA\left(c.g.c\right)\)

\(\Rightarrow AE=BD\)( 2 cạnh tương ứng )

b) Xét\(\Delta MAF\) và \(\Delta MDC\)có:

          \(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AMF}=\widehat{DMC}\left(2gocdoidinh\right)\\MF=MC\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MAF=\Delta MDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{MFA}=\widehat{MCD}\)( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AF//BC\)              (1)

c) Vì \(\Delta MBD=\Delta MEA\)( cmt )

\(\Rightarrow\widehat{MEA}=\widehat{MBD}\) ( 2 góc tương ứng ) mà 2 góc này ở vị trí SLT

\(\Rightarrow AE//BC\)               ( 2)

Từ (1) và (2) \(\Rightarrow F,A,E\) thẳng hàng ( định lý Py - Ta - go ) 

7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em xem bài ở link này nhé! Câu b

a: Xét ΔAME và ΔDMB có

MA=MD

\(\widehat{AME}=\widehat{DMB}\)

ME=MB

Do đó: ΔAME=ΔDMB

Xét tứ giác AEDB có 

M là trung điểm của AD

M là trug điểm của EB

Do đó: AEDB là hình bình hành

Suy ra: AE//BC

b: Xét tứ giác AFDC có

M là trug điểm của AD

M là trung điểm của FC

Do đó: AFDC là hình bình hành

Suy ra: AF//BC

mà AE//BC

và AF,AE có điểm chug là A

nên E,A,F thẳng hàng

7 tháng 3 2019

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài bạn làm nhé!

2 tháng 1 2017

giúp luôn mk vs

19 tháng 12 2020

CM: a) Xét tam giác AME và tam giác DMB

có ME = MB (gt)

 góc AME = góc BMD (đối đỉnh)

MA = MD (gt)

=> tam giác AME = tam giác DMB (c.g.c)

=> góc E = góc MBD (hai góc tương ứng)

Mà góc E và góc MBD ở vị trí so le trong

=> AE // BC (1)

b) Xét tam giác AEM và tam giác DCM 

có MA = MD(gt)

  góc EMA = góc DMC (đối đỉnh)

ME = MC (gt)

=> tam giác AEM = tam giác DCM (c.g.c)

=> góc F = góc MCD (hai góc tương ứng)

Mà góc F và góc MCD ở vị trí so le trong 

=> AF // BC (2)

Từ (1) và (2) suy ra AF \equiv≡AE ( theo tiên đề ơ - clit)

=> F,A,E thẳng hàng

c) Xét tam giác FMB và tam giác CME

có MF = MC (gt)

góc FMB = góc EMC (đối đỉnh)

 BM = EM (gt)

=> tam giác FMB = tam giác CME (c.g.c)

=> góc BFM = góc MCE (hai góc tương ứng)

mà góc BFM và góc MCE ở vị trí so le trong

=> BF // CE