Tan + cot =k
Cmr | k|\(\ge\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(tana+cota\right)^2=m^2\)
\(\Leftrightarrow tan^2a+cot^2a+2=m^2\)
\(\Leftrightarrow tan^2a+cot^2a-2.tana.cota=m^2-4\)
\(\Leftrightarrow\left(tana-cota\right)^2=m^2-4\)
\(\Rightarrow tana-cota=\pm\sqrt{m^2-4}\)
\(VT=tan^4x+cos^4x-2\left(tan^2x+cot^2x\right)+8\)
\(=\left(tan^2x+cot^2x\right)^2-2\left(tan^2x+cot^2x\right)+6\)
\(=\left(tan^2x+cot^2x-1\right)^2+5\)
Mặt khác áp dụng BĐT \(a^2+b^2\ge2ab\Rightarrow tan^2x+cot^2x\ge2\)
\(\Rightarrow\left(tan^2x+cot^2x-1\right)^2+5\ge\left(2-1\right)^2+5=6>5\Rightarrow VT>5\) (1)
Lại có \(3sinx-4cosx=5\left(sinx.\frac{3}{5}-cosx.\frac{4}{5}\right)\)
Do \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}\frac{3}{5}=cosa\\\frac{4}{5}=sina\end{matrix}\right.\)
\(\Rightarrow VP=3sinx-4cosx=5\left(sinx.cosa-cosx.sina\right)=5sin\left(x-a\right)\)
Do \(sin\left(x-a\right)\le1\Rightarrow5sin\left(x-a\right)\le5\Rightarrow VP\le5\) (2)
(1), (2) \(\Rightarrow VT>VP\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha},\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
=> \(\tan\left(\alpha+k\pi\right)=\dfrac{\sin\left(\alpha+k\pi\right)}{\cos\left(\alpha+k\pi\right)}\)
Mà:
sin(α+kπ) = sin α
cos(α+kπ) = cos α
nếu k chẵn
và sin(α+kπ) = - sin α
cos(α+kπ) = - cos α
nếu k lẻ
nên tan(α+kπ) = tanα
cái này là lượng giác ko fai căn thức
công thức cụ thế là sin=đ/h;cos=k/h;tan=đ/k;cot=k/đ
=>đáp án A là đúng
\(a,y'=\left(tanx\right)'=\left(\dfrac{sinx}{cosx}\right)'\\ =\dfrac{\left(sinx\right)'cosx-sinx\left(cosx\right)'}{cos^2x}\\ =\dfrac{cos^2x+sin^2x}{cos^2x}\\ =\dfrac{1}{cos^2x}\\ b,\left(cotx\right)'=\left[tan\left(\dfrac{\pi}{2}-x\right)\right]'\\ =-\dfrac{1}{cos^2\left(\dfrac{\pi}{2}-x\right)}\\ =-\dfrac{1}{sin^2\left(x\right)}\)