K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 11 2019

a/ \(A\left(-2;-4\right);B\left(1;0\right)\)

Gọi pt AB có dạng \(y=ax+b\Rightarrow\left\{{}\begin{matrix}-2a+b=-4\\a+b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow y=\frac{4}{3}x-\frac{4}{3}\)

b/ Để hai đường thẳng cắt trục hoành \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne1\end{matrix}\right.\)

Hoành độ giao điểm của (d1) và Ox:

\(\left(m-1\right)x-5=0\Rightarrow x=\frac{5}{m-1}\)

Hoành độ giao điểm của (d2) và Ox:

\(mx+7=0\Rightarrow x=-\frac{7}{m}\)

\(\Rightarrow\frac{5}{m-1}=-\frac{7}{m}\Rightarrow m=\frac{7}{12}\)

14 tháng 5 2017

Đáp án A

a: loading...

b: Khi x=2 thì y=1/2*2^2=2

=>A(2;2)

Khi x=2 thì y=2^2=4

=>B(2;4)

c: Tọa độ A' là:

\(\left\{{}\begin{matrix}x_{A'}=-x_A=-2\\y_{A'}=y_A=2\end{matrix}\right.\)

Vì f(-2)=1/2*(-2)^2=2

nên A' thuộc (P1)

Tọa độ B' là:

\(\left\{{}\begin{matrix}x_{B'}=-x_B=-2\\y_{B'}=y_B=4\end{matrix}\right.\)

Vì f1(-2)=(-2)^2=4

nên B' thuộc y=x^2

18 tháng 8 2019

Chọn đáp án C.

31 tháng 8 2018

Theo giả thiết có 

Do 

Do đó 

Chọn đáp án A.

b: f(-2)=-1/2*(-2)^2=-1/2*4=-2

=>M(-2;-2)

f(1)=-1/2*1^2=-1/2

=>N(1;-1/2)

Gọi (d): y=ax+b là phương trình đường thẳng cần tìm

Theo đề, ta có hệ: -2a+b=-2 và a+b=-1/2

=>a=1/2 và b=-1

=>y=1/2x-1

c: (D)//y=1/2x-1 nên (D): y=1/2x+b

PTHĐGĐ là:

-1/2x^2-1/2x-b=0

=>x^2+x+2b=0

Δ=1^2-4*1*2b=-8b+1

Để (P) cắt (D) tại một điểm duy nhất thì -8b+1=0

=>b=1/8

a: loading...

b: f(-1)=1/2*(-1)^2=1/2

=>M(-1;1/2)

f(2)=1/2*2^2=2

=>N(2;2)

Gọi (d): y=ax+b là phương trình đường thẳng MN

Theo đề, ta có hệ:

-a+b=1/2 và 2a+b=2

=>a=1/2 và b=1

=>(d): y=1/2x+1