K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

x2 + 10x + 21 = 0

x2 + 3x + 7x + 21 = 0

x(x + 3) + 7(x + 3) = 0

(x + 3)(x + 7) = 0

x + 3 = 0 hoặc x + 7 = 0

x = - 3 hoặc x = - 7

(x^2-10x+21)(x^3-x)=0

=>(x-3)(x-7)*x*(x^2-1)=0

=>x thuộc {0;1;-1;3;7}

=>B={0;1;-1;3;7}

12 tháng 8 2023

Ta có:

\(\left(x^2-10x+21\right)\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x^2-3x-7x+21\right)x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-7\right)x\left(x-1\right)=0\) (ĐK: \(x\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\\x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow B=\left\{1;3;7;0\right\}\)

\(a.x^2-7x-3x+21=0\Leftrightarrow\left(x^2-7x\right)-\left(3x-21\right)=0\)

\(\Leftrightarrow x\left(x-7\right)-3\left(x-7\right)=0\Leftrightarrow\left(x-3\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)

\(b.x^2+6x+2x+12=0\Leftrightarrow\left(x^2+6x\right)+\left(2x+12\right)=0\)

\(\Leftrightarrow x\left(x+6\right)+2\left(x+6\right)=0\Leftrightarrow\left(x+2\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

\(c.x^2+4x+5x+20=0\Leftrightarrow\left(x^2+4x\right)+\left(5x+20\right)=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\Leftrightarrow\left(x+5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

10 tháng 7 2023

`a,x^2+2x+1=9`

`<=>x^2+2.x.1+1^2=9`

`<=>(x+1)^2=3^2`

`<=>(x+1)^2=+-3`

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

`b, x^2-4x-21=0`

`<=>x^2+3x-7x-21=0`

`<=>x(x+3) - 7(x+3)=0`

`<=>(x+3)(x-7)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

`c,x^2+10x-24=0`

`<=>x^2+12x-2x-24=0`

`<=>x(x+12)-2(x+12)=0`

`<=>(x+12)(x-2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-12\\x=2\end{matrix}\right.\)

a: =>(x+1)^2=9

=>(x+1+3)(x+1-3)=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: =>x^2-7x+3x-21=0

=>(x-7)(x+3)=0

=>x=7;x=-3

c: =>x^2+12x-2x-24=0

=>(x+12)(x-2)=0

=>x=2 hoặc x=-12

Ta có: 

Đặt A=(x+2)(x+4)(x+6)(x+8)+2012

=(x^2+10x+16)(x^2+10x+24)+2012

Đặt y=x^2+10x+21

A=(y-5)(y+3)+2012

=y^2-2y-15+2012

=y(y-2)+1997

Mà y(y-2) chia hết cho x^2+10x+21 nên số dư là 1997

23 tháng 8 2021

( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 2012

= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ]] + 2012

= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 2012

Đặt y = x2 + 10x + 21

= ( y - 5 )( y + 3 ) + 2012 = y2 - 2y + 1997 = ( x2 + 10x + 21 )2 -2 ( x2 + 10x + 21 ) + 1997

=> Dư 2027

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

14 tháng 6 2023

`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`

`<=> 4 + 3 + (-5x) + (-2)=0`

`<=> -5x+5=0`

`<=>-5x=-5`

`<=>x=1`

`2,(25x^2-10x):5x +3(x-2)=4`

`<=> 5x - 2 + 3x-6=4`

`<=> 8x -8=4`

`<=> 8x=12`

`<=>x=12/8`

`<=>x=3/2`

`3,(3x+1)^2-(2x+1/2)^2=0`

`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`

`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`

`<=>( x+1/2) (5x+3/2)=0`

`@ TH1`

`x+1/2=0`

`<=>x=0-1/2`

`<=>x=-1/2`

` @TH2`

`5x+3/2=0`

`<=> 5x=-3/2`

`<=>x=-3/2 : 5`

`<=>x=-15/2`

`4, x^2+8x+16=0`

`<=>(x+4)^2=0`

`<=>x+4=0`

`<=>x=-4`

`5, 25-10x+x^2=0`

`<=> (5-x)^2=0`

`<=>5-x=0`

`<=>x=5`

14 tháng 6 2023

\(x^2+8x+16=x^2+2.x.4+4^2=\left(x+4\right)^2\)

\(25-10x+x^2=5^2-2.5.x+x^2=\left(5-x\right)^2\)

27 tháng 10 2021

\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)

27 tháng 10 2021

a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)

b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)

Câu 17:

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)

Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

Câu 15:

a: \(3x\left(x-1\right)+x-1=0\)

=>\(3x\left(x-1\right)+\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(3x+1\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b: \(x^2-6x=0\)

=>\(x\cdot x-x\cdot6=0\)

=>x(x-6)=0

=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)