cho góc xoy, oz là tia phân giác của xoy. trên ox,oy lấy lần lượt các điểm a,b sao cho oa=ob.lấy điểm c trên oz, \(\widehat{aoc}\)=\(\widehat{boc}\).cmr oc là đường trung trực của ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAOC và ΔBOC
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
OA=OB
Do đó: ΔAOC=ΔBOC
1)Xét ΔAOCvàΔOBC có:
OC:cạnh chung
OB=OA(GT)
gócBOC=gócAOC(vì Oz là p/g của góc xOy)
Do đó Δ AOC= Δ OBC(c.g.c)
2)a)Xét Δ OIB và Δ OIA có:
OI:cạnh chung
OB=OA(GT)
góc BOC= góc AOC(vì Oz là p/g của góc xOy)
Suy ra ΔOIB =Δ OIA(c.g.c)
⇒BI=IA⇒I là trung điểm của AB
b)vì ΔOIB=ΔOIA(câu a) nên góc OIB= góc OIA(2 góc tương ứng)
Mà góc OIB+góc OIA=180 nên góc OIB= góc OIA=180/2=90
⇒OI⊥AB hay OC⊥AB
a) Vì điểm C nằm giữa hai điểm A và B nên tia OC nằm giữa hai tia OA và OB
\(\Leftrightarrow\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)
\(\Leftrightarrow\widehat{BOC}+30^0=60^0\)
hay \(\widehat{BOC}=30^0\)
Vậy: \(\widehat{BOC}=30^0\)