K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R

b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)

c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)

\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

24 tháng 10 2023

a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\) 

Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\) 

Do: \(\sqrt{m-3}\ge0\forall m\ge3\) 

Nên với \(m\ge3\) thì y đồng biến trên R 

b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)

Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\) 

Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)

Vậy với 0 ≤ m < 5 thì y nghịch biến trên R

24 tháng 10 2023

Câu kết luận cuối cùng em ơi!

NV
25 tháng 7 2021

Áp dụng 2 BĐT:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) và \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)

\(y\ge\sqrt{x-1+5-x}=2\)

\(y\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)

Độ dài tập giá trị: \(2\sqrt{2}-2\)

25 tháng 7 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\sqrt{x-1} + \sqrt{5-x} \leq \sqrt{2(x-1+5-x)} =2\sqrt{2}\)

Áp dụng bất đẳng thức \(\sqrt{A} + \sqrt{B} \geq \sqrt{A+B}\) ta có :

\(y \geq \sqrt{x-1+5-x} = 2\)

Độ dài giá trị của y là \(2\sqrt{2}-2\)

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

NV
14 tháng 1 2021

Đơn giản là hãy đặt \(\sqrt{6-x}=t\ge0\)

Do x và t nghịch biến nhau nên \(y=f\left(x\right)\) đồng biến trên \(\left(-8;5\right)\) đồng nghĩa \(y=f\left(t\right)\) nghịch biến trên \(\left(1;\sqrt{14}\right)\) (tại sao lại cho con số này nhỉ, (-10;5) chẳng hạn có tốt ko?)

\(\Leftrightarrow\left\{{}\begin{matrix}f'\left(t\right)\le0\\t+m=0\text{ vô nghiệm trên (0;\sqrt{14})}\end{matrix}\right.\)  

\(\Leftrightarrow...\)