\(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a, rút gọn bt.
b,tìm GTNN của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn M
\(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\cdot\left(x^4+\frac{\left(1-x^2\right)\left(1+x^2\right)}{1+x^2}\right)\)
\(=\frac{x^2-2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\cdot\left(x^4-x^2+1\right)\)
\(=\frac{x^2-2}{x^2+1}\)
\(M_{min}\Leftrightarrow\frac{x^2-2}{x^2+1}\) có giá trị nhỏ nhất
Biến đổi:\(M=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
M có giá trị nhỏ nhất khi \(\frac{3}{x^2+1}\) có giá trị lớn nhất
\(\Rightarrow x^2+1\) có giá trị nhỏ nhất
Mà \(x^2\ge0\Rightarrow x^2+1\ge1\) dấu "=" xảy ra tại x=0
Vậy.........................................
\(a,M=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)=\frac{x^4-1-x^4+x^2-1}{x^2+1}=\frac{x^2-2}{x^2+1}\)
\(b,\)Biến đổi : \(M=1-\frac{3}{x^2+1}\).\(M\)bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
\(\Rightarrow M\)bé nhất \(=-2\)
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
a/ ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
\(A=\left[\frac{1}{\sqrt{x}-1}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}+4}{\sqrt{x}-1}\right]\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+1}\)
b/
Ta có: \(A=\frac{1}{\sqrt{x}+1}\ge1\)
Vậy Min A = 1 .Dấu "=" xảy ra khi x = 0
a , rút gọn : A= \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{x-1}\right):\left(2-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{1\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{\sqrt{x}+1+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+4}{\sqrt{x}-1}\right)\)
A= \(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
A = \(\frac{1}{\sqrt{x}+1}\)
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2