K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Bài 1:

undefined

Bài 2:

Ta có:

\(\left\{{}\begin{matrix}AC\perp AB\left(gt\right)\\BD\perp AB\left(gt\right)\end{matrix}\right.\)

=> \(AC\) // \(BD\) (từ vuông góc đến song song)

=> \(\widehat{ADC}=\widehat{BCD}\) (vì 2 góc so le trong)

Chúc bạn học tốt!

30 tháng 7 2021

a/ xét 2 tam giác AMB và CMK có:

AM = MC (M là t/đ AC)

góc KMC = góc BMA (đối đỉnh)

MK = MB (gt)

=> tam giác AMB = tam giác CMK (c.g.c)

=> góc MAB =  góc MCK = 90 độ hay KC vuông AC (đpcm)

b. xét hai tam giác AMK và CMB có:

AM = MC (M là t/đ AC)

góc AMK = góc CMB (đối đỉnh)

MK = MB (gt)

=> tg AMK = tg CMB (c.g.c)

=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)

3 tháng 1 2016

phần a bạn sai đê

B. Xét tg BMC và tg KMA có :

^BMC = ^KMA ( đối đỉnh)

MB= MK ( gt)

AM= MC ( Do M là trung điểm của AC ; gt )

→ tg BMC = tg KMA ( c.g.c)

→^ MBC = ^MKA ( 2 góc tương ứng )

Mà đây là 2 góc So letrong 

→ BC // AK 

→ ĐPCM

3 tháng 1 2016

thấy đúng tick giùm nha

10 tháng 12 2016

a) Xét tam giác ABM và tam giác CKM , có:
AM = MC ( M là trung điểm )
MB = MK ( gt)
Góc BMA = KMC ( 2 góc đối đỉnh)
=> tam giác ABM = CKM
=> góc A = góc C ( =90 độ) ( 2 góc tg ứng)
=> KC vuông góc AC
giải phần a đã =)))
 

9 tháng 9 2018

cảm ơn bn\(\dfrac{cảm}{ơn}\)

1 tháng 1 2016

A B C M 1 2 3 4 K

a)Xét tam giác BAM và tam giác KCM có :

         M1 = M3 ( Đối đỉnh )

            AM = MC ( gt )

         BM = MK ( gt )

=> Tam giác BAM = tam giác KCM 

=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )

b) Xét tam giác AMK và tam giác CMB có :

       KM = MB ( gt )

       AM = MC ( gt )

       M2 = M4  ( Đối đỉnh )

=> Tam giác AMK = tam giác CMB 

=> Góc MKA = góc MBC ( cặp góc tương ứng )

=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )

26 tháng 2 2017

bạn giỏi quá

21 tháng 6 2019

A B C K M 1 2 3 4

Cm: Xét t/giác ABM và t/giác  CKM 

có : BM = MK (gt)

    \(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)

   AM = MC (gt)

=> t/giác ABM = t/giác CKM (c.g.c)

=> \(\widehat{BAM}=\widehat{MCK}\) (hai góc t/ứng)

Mà \(\widehat{BAM}\) = 900 => \(\widehat{MCK}=90^0\)

=> KC \(\perp\)AC (Đpcm)

b) Xét  t/giác AMK và t/giác CMB

có AM = MC (gt)

  \(\widehat{M_4}=\widehat{M_3}\) (đối đỉnh)

  MK = MB (gt)

=> t/giác AMK = t/giác CMB (c.g.c)

=> \(\widehat{KAM}=\widehat{MCB}\)(2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AK // BC (Đpcm)

A) Xét tam giác ABM và tam giác CKM ta có :

BM=MK

AM=MC

BMA = CMK

=> Tam giác ABM = tam giác CKM (c.g.c)

=> BAM = MCK = 90 độ

=> CK vuông góc với AC

B) Xét tam giác AMK và tam giác BMC ta có :

BM=MK

AM = MC

BMC = AMK

=> Tam giác AMK = tam giác BMC(c.g.c)

=> BCM = MAK 

=> AK// BC

23 tháng 11 2016

a) Xét tam giác AMB và tam giác CMK ta có :

AM = MC(M là trung điểm của AC)

BM = KM (giả thiết)

Góc AMB = góc CMK

Suy ra tam giác AMB = tam giác CMK ( cạnh-góc-cạnh)

Suy ra góc BAM = góc KCM ( 2 góc tương ứng )

Vậy KC vuông góc với AC

b) Theo câu a ta có tam giác AMB = tam giác CKM (chứng minh trên, cạnh-góc-cạnh)

Suy ra AB = CK ( 2 góc tương ứng )              (1)

AB vuông góc với AC và CK vuông góc với AC ( chứng minh trên )

Suy ra AB song song với CK                          (2)

Từ (1) và (2) suy ra AKCB là hình bình hành ( tứ giác có 2 cạnh song song và bằng nhau )

Nên AK song song với BC

K MÌNH NHA THANKS GOODBYE@@@@@@@@@@@@@@@@@@@@@@@@@@ 

23 tháng 11 2016

a) xét tam giác AMB và tam giác CMK có

AM = MC ( M lag trung điểm của AC )

BM = KM ( theo để ra )

góc AMB = góc CMK

=> tam giác AMB = tam giác CMK  ( c-g-c)

=>góc BAM = góc KCM (  2 góc tương ứng )

vậy KC vuông góc với AC 

b) theo câu a ta có tam giác AMB = tam giác CMK (c-g-c)

=> AB = CK ( 2 góc tương ứng )             (1)

mặt khác AB vuông góc với AC và CK vuông góc với AC (đã chứng minh ở câu a ) nên

AB song song với CK                            (2)

từ (1) và(2) => AKCB là hình bình hành (tứ giác có 2 cạnh song song và bằng nhau )

=> AK song song với BC

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

a/ xét 2 tam giác AMB và CMK có:

AM = MC (M là t/đ AC)

góc KMC = góc BMA (đối đỉnh)

MK = MB (gt)

=> tam giác AMB = tam giác CMK (c.g.c)

=> góc MAB =  góc MCK = 90 độ hay KC vuông AC (đpcm)

b. xét hai tam giác AMK và CMB có:

AM = MC (M là t/đ AC)

góc AMK = góc CMB (đối đỉnh)

MK = MB (gt)

=> tg AMK = tg CMB (c.g.c)

=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)