Tìm x \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{26x+5}=a\ge0\\\sqrt{x^2+30}=b>0\end{matrix}\right.\)
\(\Rightarrow\frac{a^2}{b}+2a=3b\)
\(\Leftrightarrow a^2+2ab-3b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+3b\right)=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow\sqrt{26x+5}=\sqrt{x^2+30}\)
\(\Leftrightarrow x^2-26x+25=0\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)
ĐK -3 =<x =<29
Với mọi a,b >=0 ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:
\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)
\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)
\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)
Do đó (1) <=> x=13 (tm)
ĐKXĐ: ...
\(VT=\sqrt{14-x}+\sqrt{x-12}\le\sqrt{2\left(14-x+x-12\right)}=2\)
\(VP=\left(x-13\right)^2+2\ge2\)
\(\Rightarrow VP\ge VT\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}14-x=x-12\\x-13=0\end{matrix}\right.\) \(\Rightarrow x=13\)
Vậy pt có nghiệm duy nhất \(x=13\)
Akai HarumaBăng Băng 2k6HISINOMA KINIMADO
Vũ Minh TuấnNguyễn Thanh Hằng